Abstract:This paper presents a method to explain the internal representation structure of a neural network for image generation. Specifically, our method disentangles primitive feature components from the intermediate-layer feature of the neural network, which ensures that each feature component is exclusively used to generate a specific set of image regions. In this way, the generation of the entire image can be considered as the superposition of different pre-encoded primitive regional patterns, each being generated by a feature component. We find that the feature component can be represented as an OR relationship between the demands for generating different image regions, which is encoded by the neural network. Therefore, we extend the Harsanyi interaction to represent such an OR interaction to disentangle the feature component. Experiments show a clear correspondence between each feature component and the generation of specific image regions.
Abstract:Photometric bundle adjustment (PBA) is widely used in estimating the camera pose and 3D geometry by assuming a Lambertian world. However, the assumption of photometric consistency is often violated since the non-diffuse reflection is common in real-world environments. The photometric inconsistency significantly affects the reliability of existing PBA methods. To solve this problem, we propose a novel physically-based PBA method. Specifically, we introduce the physically-based weights regarding material, illumination, and light path. These weights distinguish the pixel pairs with different levels of photometric inconsistency. We also design corresponding models for material estimation based on sequential images and illumination estimation based on point clouds. In addition, we establish the first SLAM-related dataset of non-Lambertian scenes with complete ground truth of illumination and material. Extensive experiments demonstrated that our PBA method outperforms existing approaches in accuracy.
Abstract:This paper aims to explain how a deep neural network (DNN) gradually extracts new knowledge and forgets noisy features through layers in forward propagation. Up to now, although the definition of knowledge encoded by the DNN has not reached a consensus, Previous studies have derived a series of mathematical evidence to take interactions as symbolic primitive inference patterns encoded by a DNN. We extend the definition of interactions and, for the first time, extract interactions encoded by intermediate layers. We quantify and track the newly emerged interactions and the forgotten interactions in each layer during the forward propagation, which shed new light on the learning behavior of DNNs. The layer-wise change of interactions also reveals the change of the generalization capacity and instability of feature representations of a DNN.
Abstract:To efficiently express tensor data using the Tucker format, a critical task is to minimize the multilinear rank such that the model would not be over-flexible and lead to overfitting. Due to the lack of rank minimization tools in tensor, existing works connect Tucker multilinear rank minimization to trace norm minimization of matrices unfolded from the tensor data. While these formulations try to exploit the common aim of identifying the low-dimensional structure of the tensor and matrix, this paper reveals that existing trace norm-based formulations in Tucker completion are inefficient in multilinear rank minimization. We further propose a new interpretation of Tucker format such that trace norm minimization is applied to the factor matrices of the equivalent representation, rather than some matrices unfolded from tensor data. Based on the newly established problem formulation, a fixed point iteration algorithm is proposed, and its convergence is proved. Numerical results are presented to show that the proposed algorithm exhibits significant improved performance in terms of multilinear rank learning and consequently tensor signal recovery accuracy, compared to existing trace norm based Tucker completion methods.
Abstract:This letter introduces a structured high-rank tensor approach for estimating sub-6G uplink channels in multi-user multiple-input and multiple-output (MU-MIMO) systems. To tackle the difficulty of channel estimation in sub-6G bands with hundreds of sub-paths, our approach fully exploits the physical structure of channel and establishes the link between sub-6G channel model and a high-rank four-dimensional (4D) tensor Canonical Polyadic Decomposition (CPD) with three factor matrices being Vandermonde-constrained. Accordingly, a stronger uniqueness property is derived in this work. This model supports an efficient one-pass algorithm for estimating sub-path parameters, which ensures plug-in compatibility with the widely-used baseline. Our method performs much better than the state-of-the-art tensor-based techniques on the simulations adhering to the 3GPP 5G protocols.
Abstract:In the fifth-generation new radio (5G NR) frequency division duplex (FDD) massive multiple-input and multiple-output (MIMO) systems, downlink beamforming relies on the acquisition of downlink channel state information (CSI). Codebook based limited feedback schemes have been proposed and widely used in practice to recover the downlink CSI with low communication overhead. In such schemes, the performance of downlink beamforming is determined by the codebook design and the codebook indicator feedback. However, limited by the quantization quality of the codebook, directly utilizing the codeword indicated by the feedback as the beamforming vector cannot achieve high performance. Therefore, other feedback values, such as channel qualification indicator (CQI), should be considered to enhance beamforming. In this paper, we present the relation between CQI and the optimal beamforming vectors, based on which an empirical Bayes based intelligent tuning-free algorithm is devised to learn the optimal beamforming vector and the associated regularization parameter. The proposed algorithm can handle different communication scenarios of MIMO systems, including single stream and multiple streams data transmission scenarios. Numerical results have shown the excellent performance of the proposed algorithm in terms of both beamforming vector acquisition and regularization parameter learning.
Abstract:In this letter, we investigate the channel estimation problem for MIMO wireless communication systems with movable antennas (MAs) at both the transmitter (Tx) and receiver (Rx). To achieve high channel estimation accuracy with low pilot training overhead, we propose a tensor decomposition-based method for estimating the parameters of multi-path channel components, including their azimuth and elevation angles, as well as complex gain coefficients, thereby reconstructing the wireless channel between any pair of Tx and Rx MA positions in the Tx and Rx regions. First, we introduce a two-stage Tx-Rx successive antenna movement pattern for pilot training, such that the received pilot signals in both stages can be expressed as a third-order tensor. Then, we obtain the factor matrices of the tensor via the canonical polyadic decomposition, and thereby estimate the angle/gain parameters for enabling the channel reconstruction between arbitrary Tx/Rx MA positions. In addition, we analyze the uniqueness condition of the tensor decomposition, which ensures the complete channel reconstruction between the whole Tx and Rx regions based on the channel measurements at only a finite number of Tx/Rx MA positions. Finally, simulation results are presented to evaluate the proposed tensor decomposition-based method as compared to existing methods, in terms of channel estimation accuracy and pilot overhead.
Abstract:Autonomous driving holds great promise in addressing traffic safety concerns by leveraging artificial intelligence and sensor technology. Multi-Object Tracking plays a critical role in ensuring safer and more efficient navigation through complex traffic scenarios. This paper presents a novel deep learning-based method that integrates radar and camera data to enhance the accuracy and robustness of Multi-Object Tracking in autonomous driving systems. The proposed method leverages a Bi-directional Long Short-Term Memory network to incorporate long-term temporal information and improve motion prediction. An appearance feature model inspired by FaceNet is used to establish associations between objects across different frames, ensuring consistent tracking. A tri-output mechanism is employed, consisting of individual outputs for radar and camera sensors and a fusion output, to provide robustness against sensor failures and produce accurate tracking results. Through extensive evaluations of real-world datasets, our approach demonstrates remarkable improvements in tracking accuracy, ensuring reliable performance even in low-visibility scenarios.
Abstract:Cross-view geo-localization confronts significant challenges due to large perspective changes, especially when the ground-view query image has a limited field of view with unknown orientation. To bridge the cross-view domain gap, we for the first time explore to learn a BEV representation directly from the ground query image. However, the unknown orientation between ground and aerial images combined with the absence of camera parameters led to ambiguity between BEV queries and ground references. To tackle this challenge, we propose a novel Window-to-Window BEV representation learning method, termed W2W-BEV, which adaptively matches BEV queries to ground reference at window-scale. Specifically, predefined BEV embeddings and extracted ground features are segmented into a fixed number of windows, and then most similar ground window is chosen for each BEV feature based on the context-aware window matching strategy. Subsequently, the cross-attention is performed between the matched BEV and ground windows to learn the robust BEV representation. Additionally, we use ground features along with predicted depth information to initialize the BEV embeddings, helping learn more powerful BEV representations. Extensive experimental results on benchmark datasets demonstrate significant superiority of our W2W-BEV over previous state-of-the-art methods under challenging conditions of unknown orientation and limited FoV. Specifically, on the CVUSA dataset with limited Fov of 90 degree and unknown orientation, the W2W-BEV achieve an significant improvement from 47.24% to 64.73 %(+17.49%) in R@1 accuracy.
Abstract:Visual place recognition (VPR) remains challenging due to significant viewpoint changes and appearance variations. Mainstream works tackle these challenges by developing various feature aggregation methods to transform deep features into robust and compact global representations. Unfortunately, satisfactory results cannot be achieved under challenging conditions. We start from a new perspective and attempt to build a discriminative global representations by fusing image data and text descriptions of the the visual scene. The motivation is twofold: (1) Current Large Vision-Language Models (LVLMs) demonstrate extraordinary emergent capability in visual instruction following, and thus provide an efficient and flexible manner in generating text descriptions of images; (2) The text descriptions, which provide high-level scene understanding, show strong robustness against environment variations. Although promising, leveraging LVLMs to build multi-modal VPR solutions remains challenging in efficient multi-modal fusion. Furthermore, LVLMs will inevitably produces some inaccurate descriptions, making it even harder. To tackle these challenges, we propose a novel multi-modal VPR solution. It first adapts pre-trained visual and language foundation models to VPR for extracting image and text features, which are then fed into the feature combiner to enhance each other. As the main component, the feature combiner first propose a token-wise attention block to adaptively recalibrate text tokens according to their relevance to the image data, and then develop an efficient cross-attention fusion module to propagate information across different modalities. The enhanced multi-modal features are compressed into the feature descriptor for performing retrieval. Experimental results show that our method outperforms state-of-the-art methods by a large margin with significantly smaller image descriptor dimension.