Abstract:This paper presents a method to explain the internal representation structure of a neural network for image generation. Specifically, our method disentangles primitive feature components from the intermediate-layer feature of the neural network, which ensures that each feature component is exclusively used to generate a specific set of image regions. In this way, the generation of the entire image can be considered as the superposition of different pre-encoded primitive regional patterns, each being generated by a feature component. We find that the feature component can be represented as an OR relationship between the demands for generating different image regions, which is encoded by the neural network. Therefore, we extend the Harsanyi interaction to represent such an OR interaction to disentangle the feature component. Experiments show a clear correspondence between each feature component and the generation of specific image regions.
Abstract:Integrated sensing and communication (ISAC) emerges as an essential technique for overcoming spectrum congestion. However, the performance of traditional ISAC systems with fixed-position-antennas (FPA) is limited due to insufficient spatial degree of freedom (DoF) exploration. Recently, fluid antenna (FA) with reconfigurable antenna position is developed to enhance the sensing and communication performance by reshaping the channel. This paper investigates an FA-enhanced ISAC system where a base station is equipped with multiple FAs to communicate with multiple single-antenna users and with FPAs to sense a point target. In this paper, we consider both perfect and imperfect channel state information (CSI) of the communication channel and sensing channel. In two cases, we focus on the maximization of the sensing signal-to-noise (SNR) by optimizing the positions of FAs and the dual-functional beamforming under the constraints of the FA moving region, the minimum FA distance and the minimum signal-to-interference-plus-noise (SINR) per user. Specifically, for the ideal case of perfect CSI, an iterative alternating optimization (AO) algorithm is proposed to tackle the formulated problem where the dual-functional beamforming and the FA positions are obtained via semidefinite relaxation (SDR) and successive convex approximation (SCA) techniques. Then, for the imperfect CSI case, we propose an AO-based iterative algorithm where $\mathcal{S}-$Procedure and SCA are applied to obtain the dual-functional beamforming and the FA positions. Furthermore, we analytically and numerically prove the convergence of the proposed algorithms. Numerical results demonstrate the notable gains of the proposed algorithms in the respective cases.
Abstract:Most existing studies on massive grant-free access, proposed to support massive machine-type communications (mMTC) for the Internet of things (IoT), assume Rayleigh fading and perfect synchronization for simplicity. However, in practice, line-of-sight (LoS) components generally exist, and time and frequency synchronization are usually imperfect. This paper systematically investigates maximum likelihood estimation (MLE)-based device activity detection under Rician fading for massive grant-free access with perfect and imperfect synchronization. Specifically, we formulate device activity detection in the synchronous case and joint device activity and offset detection in three asynchronous cases (i.e., time, frequency, and time and frequency asynchronous cases) as MLE problems. In the synchronous case, we propose an iterative algorithm to obtain a stationary point of the MLE problem. In each asynchronous case, we propose two iterative algorithms with identical detection performance but different computational complexities. In particular, one is computationally efficient for small ranges of offsets, whereas the other one, relying on fast Fourier transform (FFT) and inverse FFT, is computationally efficient for large ranges of offsets. The proposed algorithms generalize the existing MLE-based methods for Rayleigh fading and perfect synchronization. Numerical results show the notable gains of the proposed algorithms over existing methods in detection accuracy and computation time.
Abstract:The analysis and optimization of single intelligent reflecting surface (IRS)-assisted systems have been extensively studied, whereas little is known regarding multiple-IRS-assisted systems. This paper investigates the analysis and optimization of a double-IRS cooperatively assisted downlink system, where a multi-antenna base station (BS) serves a single-antenna user with the help of two multi-element IRSs, connected by an inter-IRS channel. The channel between any two nodes is modeled with Rician fading. The BS adopts the instantaneous CSI-adaptive maximum-ratio transmission (MRT) beamformer, and the two IRSs adopt a cooperative quasi-static phase shift design. The goal is to maximize the average achievable rate, which can be reflected by the average channel power of the equivalent channel between the BS and user, at a low phase adjustment cost and computational complexity. First, we obtain tractable expressions of the average channel power of the equivalent channel in the general Rician factor, pure line of sight (LoS), and pure non-line of sight (NLoS) regimes, respectively. Then, we jointly optimize the phase shifts of the two IRSs to maximize the average channel power of the equivalent channel in these regimes. The optimization problems are challenging non-convex problems. We obtain globally optimal closed-form solutions for some cases and propose computationally efficient iterative algorithms to obtain stationary points for the other cases. Next, we compare the computational complexity for optimizing the phase shifts and the optimal average channel power of the double-IRS cooperatively assisted system with those of a counterpart single-IRS-assisted system at a large number of reflecting elements in the three regimes. Finally, we numerically demonstrate notable gains of the proposed solutions over the existing solutions at different system parameters.