Abstract:Data-driven decision-making processes increasingly utilize end-to-end learnable deep neural networks to render final decisions. Sometimes, the output of the forward functions in certain layers is determined by the solutions to mathematical optimization problems, leading to the emergence of differentiable optimization layers that permit gradient back-propagation. However, real-world scenarios often involve large-scale datasets and numerous constraints, presenting significant challenges. Current methods for differentiating optimization problems typically rely on implicit differentiation, which necessitates costly computations on the Jacobian matrices, resulting in low efficiency. In this paper, we introduce BPQP, a differentiable convex optimization framework designed for efficient end-to-end learning. To enhance efficiency, we reformulate the backward pass as a simplified and decoupled quadratic programming problem by leveraging the structural properties of the KKT matrix. This reformulation enables the use of first-order optimization algorithms in calculating the backward pass gradients, allowing our framework to potentially utilize any state-of-the-art solver. As solver technologies evolve, BPQP can continuously adapt and improve its efficiency. Extensive experiments on both simulated and real-world datasets demonstrate that BPQP achieves a significant improvement in efficiency--typically an order of magnitude faster in overall execution time compared to other differentiable optimization layers. Our results not only highlight the efficiency gains of BPQP but also underscore its superiority over differentiable optimization layer baselines.
Abstract:Artificial Intelligence (AI) significantly influences many fields, largely thanks to the vast amounts of high-quality data for machine learning models. The emphasis is now on a data-centric AI strategy, prioritizing data development over model design progress. Automating this process is crucial. In this paper, we serve as the first work to introduce the automatic data-centric development (AD^2) task and outline its core challenges, which require domain-experts-like task scheduling and implementation capability, largely unexplored by previous work. By leveraging the strong complex problem-solving capabilities of large language models (LLMs), we propose an LLM-based autonomous agent, equipped with a strategy named Collaborative Knowledge-STudying-Enhanced Evolution by Retrieval (Co-STEER), to simultaneously address all the challenges. Specifically, our proposed Co-STEER agent enriches its domain knowledge through our proposed evolving strategy and develops both its scheduling and implementation skills by accumulating and retrieving domain-specific practical experience. With an improved schedule, the capability for implementation accelerates. Simultaneously, as implementation feedback becomes more thorough, the scheduling accuracy increases. These two capabilities evolve together through practical feedback, enabling a collaborative evolution process. Extensive experimental results demonstrate that our Co-STEER agent breaks new ground in AD^2 research, possesses strong evolvable schedule and implementation ability, and demonstrates the significant effectiveness of its components. Our Co-STEER paves the way for AD^2 advancements.
Abstract:The progress of humanity is driven by those successful discoveries accompanied by countless failed experiments. Researchers often seek the potential research directions by reading and then verifying them through experiments. The process imposes a significant burden on researchers. In the past decade, the data-driven black-box deep learning method demonstrates its effectiveness in a wide range of real-world scenarios, which exacerbates the experimental burden of researchers and thus renders the potential successful discoveries veiled. Therefore, automating such a research and development (R&D) process is an urgent need. In this paper, we serve as the first effort to formalize the goal by proposing a Real-world Data-centric automatic R&D Benchmark, namely RD2Bench. RD2Bench benchmarks all the operations in data-centric automatic R&D (D-CARD) as a whole to navigate future work toward our goal directly. We focuses on evaluating the interaction and synergistic effects of various model capabilities and aiding to select the well-performed trustworthy models. Although RD2Bench is very challenging to the state-of-the-art (SOTA) large language model (LLM) named GPT-4, indicating ample research opportunities and more research efforts, LLMs possess promising potential to bring more significant development to D-CARD: They are able to implement some simple methods without adopting any additional techniques. We appeal to future work to take developing techniques for tackling automatic R&D into consideration, thus bringing the opportunities of the potential revolutionary upgrade to human productivity.
Abstract:Recently, diffusion probabilistic models have attracted attention in generative time series forecasting due to their remarkable capacity to generate high-fidelity samples. However, the effective utilization of their strong modeling ability in the probabilistic time series forecasting task remains an open question, partially due to the challenge of instability arising from their stochastic nature. To address this challenge, we introduce a novel Multi-Granularity Time Series Diffusion (MG-TSD) model, which achieves state-of-the-art predictive performance by leveraging the inherent granularity levels within the data as given targets at intermediate diffusion steps to guide the learning process of diffusion models. The way to construct the targets is motivated by the observation that the forward process of the diffusion model, which sequentially corrupts the data distribution to a standard normal distribution, intuitively aligns with the process of smoothing fine-grained data into a coarse-grained representation, both of which result in a gradual loss of fine distribution features. In the study, we derive a novel multi-granularity guidance diffusion loss function and propose a concise implementation method to effectively utilize coarse-grained data across various granularity levels. More importantly, our approach does not rely on additional external data, making it versatile and applicable across various domains. Extensive experiments conducted on real-world datasets demonstrate that our MG-TSD model outperforms existing time series prediction methods.
Abstract:In the wake of relentless digital transformation, data-driven solutions are emerging as powerful tools to address multifarious industrial tasks such as forecasting, anomaly detection, planning, and even complex decision-making. Although data-centric R&D has been pivotal in harnessing these solutions, it often comes with significant costs in terms of human, computational, and time resources. This paper delves into the potential of large language models (LLMs) to expedite the evolution cycle of data-centric R&D. Assessing the foundational elements of data-centric R&D, including heterogeneous task-related data, multi-facet domain knowledge, and diverse computing-functional tools, we explore how well LLMs can understand domain-specific requirements, generate professional ideas, utilize domain-specific tools to conduct experiments, interpret results, and incorporate knowledge from past endeavors to tackle new challenges. We take quantitative investment research as a typical example of industrial data-centric R&D scenario and verified our proposed framework upon our full-stack open-sourced quantitative research platform Qlib and obtained promising results which shed light on our vision of automatic evolving of industrial data-centric R&D cycle.
Abstract:High-frequency quantitative investment is a crucial aspect of stock investment. Notably, order flow data plays a critical role as it provides the most detailed level of information among high-frequency trading data, including comprehensive data from the order book and transaction records at the tick level. The order flow data is extremely valuable for market analysis as it equips traders with essential insights for making informed decisions. However, extracting and effectively utilizing order flow data present challenges due to the large volume of data involved and the limitations of traditional factor mining techniques, which are primarily designed for coarser-level stock data. To address these challenges, we propose a novel framework that aims to effectively extract essential factors from order flow data for diverse downstream tasks across different granularities and scenarios. Our method consists of a Context Encoder and an Factor Extractor. The Context Encoder learns an embedding for the current order flow data segment's context by considering both the expected and actual market state. In addition, the Factor Extractor uses unsupervised learning methods to select such important signals that are most distinct from the majority within the given context. The extracted factors are then utilized for downstream tasks. In empirical studies, our proposed framework efficiently handles an entire year of stock order flow data across diverse scenarios, offering a broader range of applications compared to existing tick-level approaches that are limited to only a few days of stock data. We demonstrate that our method extracts superior factors from order flow data, enabling significant improvement for stock trend prediction and order execution tasks at the second and minute level.
Abstract:Order execution is a fundamental task in quantitative finance, aiming at finishing acquisition or liquidation for a number of trading orders of the specific assets. Recent advance in model-free reinforcement learning (RL) provides a data-driven solution to the order execution problem. However, the existing works always optimize execution for an individual order, overlooking the practice that multiple orders are specified to execute simultaneously, resulting in suboptimality and bias. In this paper, we first present a multi-agent RL (MARL) method for multi-order execution considering practical constraints. Specifically, we treat every agent as an individual operator to trade one specific order, while keeping communicating with each other and collaborating for maximizing the overall profits. Nevertheless, the existing MARL algorithms often incorporate communication among agents by exchanging only the information of their partial observations, which is inefficient in complicated financial market. To improve collaboration, we then propose a learnable multi-round communication protocol, for the agents communicating the intended actions with each other and refining accordingly. It is optimized through a novel action value attribution method which is provably consistent with the original learning objective yet more efficient. The experiments on the data from two real-world markets have illustrated superior performance with significantly better collaboration effectiveness achieved by our method.
Abstract:Off-Policy reinforcement learning has been a driving force for the state-of-the-art conversational AIs leading to more natural humanagent interactions and improving the user satisfaction for goal-oriented agents. However, in large-scale commercial settings, it is often challenging to balance between policy improvements and experience continuity on the broad spectrum of applications handled by such system. In the literature, off-policy evaluation and guard-railing on aggregate statistics has been commonly used to address this problem. In this paper, we propose a method for curating and leveraging high-precision samples sourced from historical regression incident reports to validate, safe-guard, and improve policies prior to the online deployment. We conducted extensive experiments using data from a real-world conversational system and actual regression incidents. The proposed method is currently deployed in our production system to protect customers against broken experiences and enable long-term policy improvements.
Abstract:Modeling sequential patterns from data is at the core of various time series forecasting tasks. Deep learning models have greatly outperformed many traditional models, but these black-box models generally lack explainability in prediction and decision making. To reveal the underlying trend with understandable mathematical expressions, scientists and economists tend to use partial differential equations (PDEs) to explain the highly nonlinear dynamics of sequential patterns. However, it usually requires domain expert knowledge and a series of simplified assumptions, which is not always practical and can deviate from the ever-changing world. Is it possible to learn the differential relations from data dynamically to explain the time-evolving dynamics? In this work, we propose an learning framework that can automatically obtain interpretable PDE models from sequential data. Particularly, this framework is comprised of learnable differential blocks, named $P$-blocks, which is proved to be able to approximate any time-evolving complex continuous functions in theory. Moreover, to capture the dynamics shift, this framework introduces a meta-learning controller to dynamically optimize the hyper-parameters of a hybrid PDE model. Extensive experiments on times series forecasting of financial, engineering, and health data show that our model can provide valuable interpretability and achieve comparable performance to state-of-the-art models. From empirical studies, we find that learning a few differential operators may capture the major trend of sequential dynamics without massive computational complexity.
Abstract:It is challenging for reinforcement learning (RL) algorithms to succeed in real-world applications like financial trading and logistic system due to the noisy observation and environment shifting between training and evaluation. Thus, it requires both high sample efficiency and generalization for resolving real-world tasks. However, directly applying typical RL algorithms can lead to poor performance in such scenarios. Considering the great performance of ensemble methods on both accuracy and generalization in supervised learning (SL), we design a robust and applicable method named Ensemble Proximal Policy Optimization (EPPO), which learns ensemble policies in an end-to-end manner. Notably, EPPO combines each policy and the policy ensemble organically and optimizes both simultaneously. In addition, EPPO adopts a diversity enhancement regularization over the policy space which helps to generalize to unseen states and promotes exploration. We theoretically prove EPPO increases exploration efficacy, and through comprehensive experimental evaluations on various tasks, we demonstrate that EPPO achieves higher efficiency and is robust for real-world applications compared with vanilla policy optimization algorithms and other ensemble methods. Code and supplemental materials are available at https://seqml.github.io/eppo.