Abstract:This paper presents a comprehensive study leveraging Support Vector Machine (SVM) regression and Principal Component Regression (PCR) to analyze carbon dioxide emissions in a global dataset of 62 countries and their dependence on idiosyncratic, country-specific parameters. The objective is to understand the factors contributing to carbon dioxide emissions and identify the most predictive elements. The analysis provides country-specific emission estimates, highlighting diverse national trajectories and pinpointing areas for targeted interventions in climate change mitigation, sustainable development, and the growing carbon credit markets and green finance sector. The study aims to support policymaking with accurate representations of carbon dioxide emissions, offering nuanced information for formulating effective strategies to address climate change while informing initiatives related to carbon trading and environmentally sustainable investments.
Abstract:In this study, we explore the synergy of deep learning and financial market applications, focusing on pair trading. This market-neutral strategy is integral to quantitative finance and is apt for advanced deep-learning techniques. A pivotal challenge in pair trading is discerning temporal correlations among entities, necessitating the integration of diverse data modalities. Addressing this, we introduce a novel framework, Multi-modal Temporal Relation Graph Learning (MTRGL). MTRGL combines time series data and discrete features into a temporal graph and employs a memory-based temporal graph neural network. This approach reframes temporal correlation identification as a temporal graph link prediction task, which has shown empirical success. Our experiments on real-world datasets confirm the superior performance of MTRGL, emphasizing its promise in refining automated pair trading strategies.
Abstract:In the wake of relentless digital transformation, data-driven solutions are emerging as powerful tools to address multifarious industrial tasks such as forecasting, anomaly detection, planning, and even complex decision-making. Although data-centric R&D has been pivotal in harnessing these solutions, it often comes with significant costs in terms of human, computational, and time resources. This paper delves into the potential of large language models (LLMs) to expedite the evolution cycle of data-centric R&D. Assessing the foundational elements of data-centric R&D, including heterogeneous task-related data, multi-facet domain knowledge, and diverse computing-functional tools, we explore how well LLMs can understand domain-specific requirements, generate professional ideas, utilize domain-specific tools to conduct experiments, interpret results, and incorporate knowledge from past endeavors to tackle new challenges. We take quantitative investment research as a typical example of industrial data-centric R&D scenario and verified our proposed framework upon our full-stack open-sourced quantitative research platform Qlib and obtained promising results which shed light on our vision of automatic evolving of industrial data-centric R&D cycle.