Abstract:Temporal Graph Neural Networks (TGNNs) are a family of graph neural networks designed to model and learn dynamic information from temporal graphs. Given their substantial empirical success, there is an escalating interest in TGNNs within the research community. However, the majority of these efforts have been channelled towards algorithm and system design, with the evaluation metrics receiving comparatively less attention. Effective evaluation metrics are crucial for providing detailed performance insights, particularly in the temporal domain. This paper investigates the commonly used evaluation metrics for TGNNs and illustrates the failure mechanisms of these metrics in capturing essential temporal structures in the predictive behaviour of TGNNs. We provide a mathematical formulation of existing performance metrics and utilize an instance-based study to underscore their inadequacies in identifying volatility clustering (the occurrence of emerging errors within a brief interval). This phenomenon has profound implications for both algorithm and system design in the temporal domain. To address this deficiency, we introduce a new volatility-aware evaluation metric (termed volatility cluster statistics), designed for a more refined analysis of model temporal performance. Additionally, we demonstrate how this metric can serve as a temporal-volatility-aware training objective to alleviate the clustering of temporal errors. Through comprehensive experiments on various TGNN models, we validate our analysis and the proposed approach. The empirical results offer revealing insights: 1) existing TGNNs are prone to making errors with volatility clustering, and 2) TGNNs with different mechanisms to capture temporal information exhibit distinct volatility clustering patterns. Our empirical findings demonstrate that our proposed training objective effectively reduces volatility clusters in error.
Abstract:In this study, we explore the synergy of deep learning and financial market applications, focusing on pair trading. This market-neutral strategy is integral to quantitative finance and is apt for advanced deep-learning techniques. A pivotal challenge in pair trading is discerning temporal correlations among entities, necessitating the integration of diverse data modalities. Addressing this, we introduce a novel framework, Multi-modal Temporal Relation Graph Learning (MTRGL). MTRGL combines time series data and discrete features into a temporal graph and employs a memory-based temporal graph neural network. This approach reframes temporal correlation identification as a temporal graph link prediction task, which has shown empirical success. Our experiments on real-world datasets confirm the superior performance of MTRGL, emphasizing its promise in refining automated pair trading strategies.
Abstract:Since the meaning representations are detailed and accurate annotations which express fine-grained sequence-level semtantics, it is usually hard to train discriminative semantic parsers via Maximum Likelihood Estimation (MLE) in an autoregressive fashion. In this paper, we propose a semantic-aware contrastive learning algorithm, which can learn to distinguish fine-grained meaning representations and take the overall sequence-level semantic into consideration. Specifically, a multi-level online sampling algorithm is proposed to sample confusing and diverse instances. Three semantic-aware similarity functions are designed to accurately measure the distance between meaning representations as a whole. And a ranked contrastive loss is proposed to pull the representations of the semantic-identical instances together and push negative instances away. Experiments on two standard datasets show that our approach achieves significant improvements over MLE baselines and gets state-of-the-art performances by simply applying semantic-aware contrastive learning on a vanilla Seq2Seq model.
Abstract:Semantic parsing is challenging due to the structure gap and the semantic gap between utterances and logical forms. In this paper, we propose an unsupervised semantic parsing method - Synchronous Semantic Decoding (SSD), which can simultaneously resolve the semantic gap and the structure gap by jointly leveraging paraphrasing and grammar constrained decoding. Specifically, we reformulate semantic parsing as a constrained paraphrasing problem: given an utterance, our model synchronously generates its canonical utterance and meaning representation. During synchronous decoding: the utterance paraphrasing is constrained by the structure of the logical form, therefore the canonical utterance can be paraphrased controlledly; the semantic decoding is guided by the semantics of the canonical utterance, therefore its logical form can be generated unsupervisedly. Experimental results show that SSD is a promising approach and can achieve competitive unsupervised semantic parsing performance on multiple datasets.
Abstract:Partially inspired by successful applications of variational recurrent neural networks, we propose a novel variational recurrent neural machine translation (VRNMT) model in this paper. Different from the variational NMT, VRNMT introduces a series of latent random variables to model the translation procedure of a sentence in a generative way, instead of a single latent variable. Specifically, the latent random variables are included into the hidden states of the NMT decoder with elements from the variational autoencoder. In this way, these variables are recurrently generated, which enables them to further capture strong and complex dependencies among the output translations at different timesteps. In order to deal with the challenges in performing efficient posterior inference and large-scale training during the incorporation of latent variables, we build a neural posterior approximator, and equip it with a reparameterization technique to estimate the variational lower bound. Experiments on Chinese-English and English-German translation tasks demonstrate that the proposed model achieves significant improvements over both the conventional and variational NMT models.