Abstract:While Long Chain-of-Thought (CoT) reasoning significantly improves Large Language Models (LLMs) performance on complex reasoning tasks, the substantial computational and memory costs of generating long CoT sequences limit their efficiency and practicality. Existing studies usually enhance the reasoning efficiency of LLMs by compressing CoT sequences. However, this approach conflicts with test-time scaling, limiting the reasoning capacity of LLMs. In this paper, we propose an efficient reasoning framework that models the reasoning process of LLMs as a state-transition process. Specifically, we first apply a linear attention mechanism to estimate the LLM's reasoning state, which records the historical reasoning information from previous reasoning steps. Then, based on the query prompt and the reasoning state, the LLM can efficiently perform the current reasoning step and update the state. With the linear attention, each token in the current reasoning step can directly retrieve relevant historical reasoning information from the reasoning state, without explicitly attending to tokens in previous reasoning steps. In this way, the computational complexity of attention is reduced from quadratic to linear, significantly improving the reasoning efficiency of LLMs. In addition, we propose a state-based reasoning strategy to mitigate the over-thinking issue caused by noisy reasoning steps. Extensive experiments across multiple datasets and model sizes demonstrate that our framework not only improves the reasoning efficiency of LLMs but also enhances their reasoning performance.
Abstract:Despite progress in Large Vision Language Models (LVLMs), object hallucination remains a critical issue in image captioning task, where models generate descriptions of non-existent objects, compromising their reliability. Previous work attributes this to LVLMs' over-reliance on language priors and attempts to mitigate it through logits calibration. However, they still lack a thorough analysis of the over-reliance. To gain a deeper understanding of over-reliance, we conduct a series of preliminary experiments, indicating that as the generation length increases, LVLMs' over-reliance on language priors leads to inflated probability of hallucinated object tokens, consequently exacerbating object hallucination. To circumvent this issue, we propose Language-Prior-Free Verification to enable LVLMs to faithfully verify the confidence of object existence. Based on this, we propose a novel training-free Self-Validation Framework to counter the over-reliance trap. It first validates objects' existence in sampled candidate captions and further mitigates object hallucination via caption selection or aggregation. Experiment results demonstrate that our framework mitigates object hallucination significantly in image captioning task (e.g., 65.6% improvement on CHAIRI metric with LLaVA-v1.5-7B), surpassing the previous SOTA methods. This result highlights a novel path towards mitigating hallucination by unlocking the inherent potential within LVLMs themselves.
Abstract:Test-Time Training offers a promising way to improve the reasoning ability of large language models (LLMs) by adapting the model using only the test questions. However, existing methods struggle with difficult reasoning problems for two reasons: raw test questions are often too difficult to yield high-quality pseudo-labels, and the limited size of test sets makes continuous online updates prone to instability. To address these limitations, we propose TTCS, a co-evolving test-time training framework. Specifically, TTCS initializes two policies from the same pretrained model: a question synthesizer and a reasoning solver. These policies evolve through iterative optimization: the synthesizer generates progressively challenging question variants conditioned on the test questions, creating a structured curriculum tailored to the solver's current capability, while the solver updates itself using self-consistency rewards computed from multiple sampled responses on both original test and synthetic questions. Crucially, the solver's feedback guides the synthesizer to generate questions aligned with the model's current capability, and the generated question variants in turn stabilize the solver's test-time training. Experiments show that TTCS consistently strengthens the reasoning ability on challenging mathematical benchmarks and transfers to general-domain tasks across different LLM backbones, highlighting a scalable path towards dynamically constructing test-time curricula for self-evolving. Our code and implementation details are available at https://github.com/XMUDeepLIT/TTCS.
Abstract:RL-based agentic search enables LLMs to solve complex questions via dynamic planning and external search. While this approach significantly enhances accuracy with agent policies optimized via large-scale reinforcement learning, we identify a critical gap in reliability: these agents fail to recognize their reasoning boundaries and rarely admit ``I DON'T KNOW'' (IDK) even when evidence is insufficient or reasoning reaches its limit. The lack of reliability often leads to plausible but unreliable answers, introducing significant risks in many real-world scenarios. To this end, we propose Boundary-Aware Policy Optimization (BAPO), a novel RL framework designed to cultivate reliable boundary awareness without compromising accuracy. BAPO introduces two key components: (i) a group-based boundary-aware reward that encourages an IDK response only when the reasoning reaches its limit, and (ii) an adaptive reward modulator that strategically suspends this reward during early exploration, preventing the model from exploiting IDK as a shortcut. Extensive experiments on four benchmarks demonstrate that BAPO substantially enhances the overall reliability of agentic search.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) offers a promising framework for optimizing large language models in reasoning tasks. However, existing RLVR algorithms focus on different granularities, and each has complementary strengths and limitations. Group Relative Policy Optimization (GRPO) updates the policy with token-level importance ratios, which preserves fine-grained credit assignment but often suffers from high variance and instability. In contrast, Group Sequence Policy Optimization (GSPO) applies single sequence-level importance ratios across all tokens in a response that better matches sequence-level rewards, but sacrifices token-wise credit assignment. In this paper, we propose Dynamic Hybrid Policy Optimization (DHPO) to bridge GRPO and GSPO within a single clipped surrogate objective. DHPO combines token-level and sequence-level importance ratios using weighting mechanisms. We explore two variants of the mixing mechanism, including an averaged mixing and an entropy-guided mixing. To further stabilize training, we employ a branch-specific clipping strategy that constrains token-level and sequence-level ratios within separate trust regions before mixing, preventing outliers in either branch from dominating the update. Across seven challenging mathematical reasoning benchmarks, experiments on both dense and MoE models from the Qwen3 series show that DHPO consistently outperforms GRPO and GSPO. We will release our code upon acceptance of this paper.
Abstract:Precisely controlling the length of generated text is a common requirement in real-world applications. However, despite significant advancements in following human instructions, Large Language Models (LLMs) still struggle with this task. In this work, we demonstrate that LLMs often fail to accurately measure their response lengths, leading to poor adherence to length constraints. To address this issue, we propose a novel length regulation approach that incorporates dynamic length feedback during generation, enabling adaptive adjustments to meet target lengths. Experiments on summarization and biography tasks show our training-free approach significantly improves precision in achieving target token, word, or sentence counts without compromising quality. Additionally, we demonstrate that further supervised fine-tuning allows our method to generalize effectively to broader text-generation tasks.




Abstract:Mixture-of-Experts (MoE) has emerged as a promising paradigm for foundation models due to its efficient and powerful scalability. In this work, we present Sigma-MoE-Tiny, an MoE language model that achieves the highest sparsity compared to existing open-source models. Sigma-MoE-Tiny employs fine-grained expert segmentation with up to 96 experts per layer, while activating only one expert for each token, resulting in 20B total parameters with just 0.5B activated. The major challenge introduced by such extreme sparsity lies in expert load balancing. We find that the widely-used load balancing loss tends to become ineffective in the lower layers under this setting. To address this issue, we propose a progressive sparsification schedule aiming to balance expert utilization and training stability. Sigma-MoE-Tiny is pre-trained on a diverse and high-quality corpus, followed by post-training to further unlock its capabilities. The entire training process remains remarkably stable, with no occurrence of irrecoverable loss spikes. Comprehensive evaluations reveal that, despite activating only 0.5B parameters, Sigma-MoE-Tiny achieves top-tier performance among counterparts of comparable or significantly larger scale. In addition, we provide an in-depth discussion of load balancing in highly sparse MoE models, offering insights for advancing sparsity in future MoE architectures. Project page: https://qghuxmu.github.io/Sigma-MoE-Tiny Code: https://github.com/microsoft/ltp-megatron-lm
Abstract:Code-switching (CS) speech translation (ST) refers to translating speech that alternates between two or more languages into a target language text, which poses significant challenges due to the complexity of semantic modeling and the scarcity of CS data. Previous studies tend to rely on the model itself to implicitly learn semantic modeling during training, and resort to inefficient and costly manual annotations for these two challenges. To mitigate these limitations, we propose enhancing Large Language Models (LLMs) with a Mixture of Experts (MoE) speech projector, where each expert specializes in the semantic subspace of a specific language, enabling fine-grained modeling of speech features. Additionally, we introduce a multi-stage training paradigm that utilizes readily available monolingual automatic speech recognition (ASR) and monolingual ST data, facilitating speech-text alignment and improving translation capabilities. During training, we leverage a combination of language-specific loss and intra-group load balancing loss to guide the MoE speech projector in efficiently allocating tokens to the appropriate experts, across expert groups and within each group, respectively. To bridge the data gap across different training stages and improve adaptation to the CS scenario, we further employ a transition loss, enabling smooth transitions of data between stages, to effectively address the scarcity of high-quality CS speech translation data. Extensive experiments on widely used datasets demonstrate the effectiveness and generality of our approach.
Abstract:Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm to enhance the factuality of Large Language Models (LLMs). However, existing RAG systems often suffer from an unfaithfulness issue, where the model's response contradicts evidence from the retrieved context. Existing approaches to improving contextual faithfulness largely rely on external interventions, such as prompt engineering, decoding constraints, or reward-based fine-tuning. These works treat the LLM as a black box and overlook a crucial question: how does the LLM internally integrate retrieved evidence with its parametric memory, particularly under knowledge conflicts? To address this gap, we conduct a probing-based analysis of hidden-state representations in LLMs and observe three findings: knowledge integration occurs hierarchically, conflicts manifest as latent signals at the sentence level, and irrelevant context is often amplified when aligned with parametric knowledge. Building on these findings, we propose CLEAR (Conflict-Localized and Enhanced Attention for RAG), a framework that (i) decomposes context into fine-grained sentence-level knowledge, (ii) employs hidden-state probing to localize conflicting knowledge, and (iii) introduces conflict-aware fine-tuning to guide the model to accurately integrate retrieved evidence. Extensive experiments across three benchmarks demonstrate that CLEAR substantially improves both accuracy and contextual faithfulness, consistently outperforming strong baselines under diverse conflict conditions. The related resources are available at https://github.com/LinfengGao/CLEAR.
Abstract:Mixture-of-Experts (MoE) has emerged as a promising paradigm for efficiently scaling large language models without a proportional increase in computational cost. However, the standard training strategy of Top-K router prevents MoE models from realizing their full potential for elastic inference. When the number of activated experts is altered at inference time, these models exhibit precipitous performance degradation. In this work, we introduce Matryoshka MoE (M-MoE), a training framework that instills a coarse-to-fine structure directly into the expert ensemble. By systematically varying the number of activated experts during training, M-MoE compels the model to learn a meaningful ranking: top-ranked experts collaborate to provide essential, coarse-grained capabilities, while subsequent experts add progressively finer-grained detail. We explore this principle at multiple granularities, identifying a layer-wise randomization strategy as the most effective. Our experiments demonstrate that a single M-MoE model achieves remarkable elasticity, with its performance at various expert counts closely matching that of an entire suite of specialist models, but at only a fraction of the total training cost. This flexibility not only unlocks elastic inference but also enables optimizing performance by allocating different computational budgets to different model layers. Our work paves the way for more practical and adaptable deployments of large-scale MoE models.