Abstract:Text-to-speech (TTS) models have been widely adopted to enhance automatic speech recognition (ASR) systems using text-only corpora, thereby reducing the cost of labeling real speech data. Existing research primarily utilizes additional text data and predefined speech styles supported by TTS models. In this paper, we propose Hard-Synth, a novel ASR data augmentation method that leverages large language models (LLMs) and advanced zero-shot TTS. Our approach employs LLMs to generate diverse in-domain text through rewriting, without relying on additional text data. Rather than using predefined speech styles, we introduce a hard prompt selection method with zero-shot TTS to clone speech styles that the ASR model finds challenging to recognize. Experiments demonstrate that Hard-Synth significantly enhances the Conformer model, achieving relative word error rate (WER) reductions of 6.5\%/4.4\% on LibriSpeech dev/test-other subsets. Additionally, we show that Hard-Synth is data-efficient and capable of reducing bias in ASR.
Abstract:Mapping speech tokens to the same feature space as text tokens has become the paradigm for the integration of speech modality into decoder-only large language models (LLMs). An alternative approach is to use an encoder-decoder architecture that incorporates speech features through cross-attention. This approach, however, has received less attention in the literature. In this work, we connect the Whisper encoder with ChatGLM3 and provide in-depth comparisons of these two approaches using Chinese automatic speech recognition (ASR) and name entity recognition (NER) tasks. We evaluate them not only by conventional metrics like the F1 score but also by a novel fine-grained taxonomy of ASR-NER errors. Our experiments reveal that encoder-decoder architecture outperforms decoder-only architecture with a short context, while decoder-only architecture benefits from a long context as it fully exploits all layers of the LLM. By using LLM, we significantly reduced the entity omission errors and improved the entity ASR accuracy compared to the Conformer baseline. Additionally, we obtained a state-of-the-art (SOTA) F1 score of 0.805 on the AISHELL-NER test set by using chain-of-thought (CoT) NER which first infers long-form ASR transcriptions and then predicts NER labels.
Abstract:Error correction techniques have been used to refine the output sentences from automatic speech recognition (ASR) models and achieve a lower word error rate (WER). Previous works usually adopt end-to-end models and has strong dependency on Pseudo Paired Data and Original Paired Data. But when only pre-training on Pseudo Paired Data, previous models have negative effect on correction. While fine-tuning on Original Paired Data, the source side data must be transcribed by a well-trained ASR model, which takes a lot of time and not universal. In this paper, we propose UCorrect, an unsupervised Detector-Generator-Selector framework for ASR Error Correction. UCorrect has no dependency on the training data mentioned before. The whole procedure is first to detect whether the character is erroneous, then to generate some candidate characters and finally to select the most confident one to replace the error character. Experiments on the public AISHELL-1 dataset and WenetSpeech dataset show the effectiveness of UCorrect for ASR error correction: 1) it achieves significant WER reduction, achieves 6.83\% even without fine-tuning and 14.29\% after fine-tuning; 2) it outperforms the popular NAR correction models by a large margin with a competitive low latency; and 3) it is an universal method, as it reduces all WERs of the ASR model with different decoding strategies and reduces all WERs of ASR models trained on different scale datasets.
Abstract:End-to-end automatic speech recognition (ASR) systems often struggle to recognize rare name entities, such as personal names, organizations, or technical terms that are not frequently encountered in the training data. This paper presents Contextual Biasing Whisper (CB-Whisper), a novel ASR system based on OpenAI's Whisper model that performs keyword-spotting (KWS) before the decoder. The KWS module leverages text-to-speech (TTS) techniques and a convolutional neural network (CNN) classifier to match the features between the entities and the utterances. Experiments demonstrate that by incorporating predicted entities into a carefully designed spoken form prompt, the mixed-error-rate (MER) and entity recall of the Whisper model is significantly improved on three internal datasets and two open-sourced datasets that cover English-only, Chinese-only, and code-switching scenarios.