Abstract:Conversational query generation aims at producing search queries from dialogue histories, which are then used to retrieve relevant knowledge from a search engine to help knowledge-based dialogue systems. Trained to maximize the likelihood of gold queries, previous models suffer from the data hunger issue, and they tend to both drop important concepts from dialogue histories and generate irrelevant concepts at inference time. We attribute these issues to the over-association phenomenon where a large number of gold queries are indirectly related to the dialogue topics, because annotators may unconsciously perform reasoning with their background knowledge when generating these gold queries. We carefully analyze the negative effects of this phenomenon on pretrained Seq2seq query producers and then propose effective instance-level weighting strategies for training to mitigate these issues from multiple perspectives. Experiments on two benchmarks, Wizard-of-Internet and DuSinc, show that our strategies effectively alleviate the negative effects and lead to significant performance gains (2%-5% across automatic metrics and human evaluation). Further analysis shows that our model selects better concepts from dialogue histories and is 10 times more data efficient than the baseline. The code is available at https://github.com/DeepLearnXMU/QG-OverAsso.
Abstract:Recent research suggests that tree search algorithms (e.g. Monte Carlo Tree Search) can dramatically boost LLM performance on complex mathematical reasoning tasks. However, they often require more than 10 times the computational resources of greedy decoding due to wasteful search strategies, making them difficult to be deployed in practical applications. This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget (maximum number of children) calculation to tackle this issue. By considering the search progress towards the final answer (history) and the guidance from a value network (future) trained without any step-wise annotations, our algorithm iteratively selects the most promising tree node before expanding it within the boundaries of the allocated computational budget. Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach not only offers competitive performance but also enjoys significantly lower computational costs compared to baseline methods.
Abstract:Calibration, which establishes the correlation between accuracy and model confidence, is important for LLM development. We design three off-the-shelf calibration methods based on self-consistency (Wang et al., 2022) for math reasoning tasks. Evaluation on two popular benchmarks (GSM8K and MathQA) using strong open-source LLMs (Mistral and LLaMA2), our methods better bridge model confidence and accuracy than existing methods based on p(True) (Kadavath et al., 2022) or logit (Kadavath et al., 2022).
Abstract:Large language models (LLMs) suffer from catastrophic forgetting during continual learning. Conventional rehearsal-based methods rely on previous training data to retain the model's ability, which may not be feasible in real-world applications. When conducting continual learning based on a publicly-released LLM checkpoint, the availability of the original training data may be non-existent. To address this challenge, we propose a framework called Self-Synthesized Rehearsal (SSR) that uses the LLM to generate synthetic instances for rehearsal. Concretely, we first employ the base LLM for in-context learning to generate synthetic instances. Subsequently, we utilize the latest LLM to refine the instance outputs based on the synthetic inputs, preserving its acquired ability. Finally, we select diverse high-quality synthetic instances for rehearsal in future stages. Experimental results demonstrate that SSR achieves superior or comparable performance compared to conventional rehearsal-based approaches while being more data-efficient. Besides, SSR effectively preserves the generalization capabilities of LLMs in general domains.
Abstract:This work studies improving large language model (LLM) generations at inference time by mitigating fact-conflicting hallucinations. Particularly, we propose a self-endorsement framework that leverages the fine-grained fact-level comparisons across multiple sampled responses. Compared with prior ensemble methods (Wang et al., 2022;Chen et al., 2023)) that perform response-level selection, our approach can better alleviate hallucinations, especially for longform generation tasks. Our approach can broadly benefit smaller and open-source LLMs as it mainly conducts simple content-based comparisons. Experiments on Biographies show that our method can effectively improve the factuality of generations with simple and intuitive prompts across different scales of LLMs. Besides, comprehensive analyses on TriviaQA and GSM8K demonstrate the potential of self-endorsement for broader application.
Abstract:Leveraging vast and continually updated knowledge from the Internet has been considered an important ability for a dialogue system. Therefore, the dialogue query generation task is proposed for generating search queries from dialogue histories, which will be submitted to a search engine for retrieving relevant websites on the Internet. In this regard, previous efforts were devoted to collecting conversations with annotated queries and training a query producer (QP) via standard supervised learning. However, these studies still face the challenges of data scarcity and domain adaptation. To address these issues, in this paper, we propose a semi-supervised learning framework -- SemiDQG, to improve model performance with unlabeled conversations. Based on the observation that the search query is typically related to the topic of dialogue response, we train a response-augmented query producer (RA) to provide rich and effective training signals for QP. We first apply a similarity-based query selection strategy to select high-quality RA-generated pseudo queries, which are used to construct pseudo instances for training QP and RA. Then, we adopt the REINFORCE algorithm to further enhance QP, with RA-provided rewards as fine-grained training signals. Experimental results and in-depth analysis of three benchmarks show the effectiveness of our framework in cross-domain and low-resource scenarios. Particularly, SemiDQG significantly surpasses ChatGPT and competitive baselines. Our code is available at \url{https://github.com/DeepLearnXMU/SemiDQG}.
Abstract:Knowledge-aided dialogue response generation aims at augmenting chatbots with relevant external knowledge in the hope of generating more informative responses. The majority of previous work assumes that the relevant knowledge is given as input or retrieved from a static pool of knowledge. However, this assumption violates the real-world situation, where knowledge is continually updated and a chatbot has to dynamically retrieve useful knowledge. We propose a dialogue model that can access the vast and dynamic information from any search engine for response generation. As the core module, a query producer is used to generate queries from a dialogue context to interact with a search engine. We design a training algorithm using cheap noisy supervision for the query producer, where the signals are obtained by comparing retrieved articles with the next dialogue response. As the result, the query producer is adjusted without any human annotation of gold queries, making it easily transferable to other domains and search engines. Experiments show that our query producer can achieve R@1 and R@5 rates of 62.4% and 74.8% for retrieving gold knowledge, and the overall model generates better responses over strong knowledge-aided baselines using BART and other typical systems.
Abstract:Dominant sentence ordering models can be classified into pairwise ordering models and set-to-sequence models. However, there is little attempt to combine these two types of models, which inituitively possess complementary advantages. In this paper, we propose a novel sentence ordering framework which introduces two classifiers to make better use of pairwise orderings for graph-based sentence ordering. Specially, given an initial sentence-entity graph, we first introduce a graph-based classifier to predict pairwise orderings between linked sentences. Then, in an iterative manner, based on the graph updated by previously predicted high-confident pairwise orderings, another classifier is used to predict the remaining uncertain pairwise orderings. At last, we adapt a GRN-based sentence ordering model on the basis of final graph. Experiments on five commonly-used datasets demonstrate the effectiveness and generality of our model. Particularly, when equipped with BERT and FHDecoder, our model achieves state-of-the-art performance.
Abstract:The task of graph-to-text generation aims at producing sentences that preserve the meaning of input graphs. As a crucial defect, the current state-of-the-art models may mess up or even drop the core structural information of input graphs when generating outputs. We propose to tackle this problem by leveraging richer training signals that can guide our model for preserving input information. In particular, we introduce two types of autoencoding losses, each individually focusing on different aspects (a.k.a. views) of input graphs. The losses are then back-propagated to better calibrate our model via multi-task training. Experiments on two benchmarks for graph-to-text generation show the effectiveness of our approach over a state-of-the-art baseline. Our code is available at \url{http://github.com/Soistesimmer/AMR-multiview}.