Abstract:Trustworthiness and interpretability are inextricably linked concepts for LLMs. The more interpretable an LLM is, the more trustworthy it becomes. However, current techniques for interpreting LLMs when applied to code-related tasks largely focus on accuracy measurements, measures of how models react to change, or individual task performance instead of the fine-grained explanations needed at prediction time for greater interpretability, and hence trust. To improve upon this status quo, this paper introduces ASTrust, an interpretability method for LLMs of code that generates explanations grounded in the relationship between model confidence and syntactic structures of programming languages. ASTrust explains generated code in the context of syntax categories based on Abstract Syntax Trees and aids practitioners in understanding model predictions at both local (individual code snippets) and global (larger datasets of code) levels. By distributing and assigning model confidence scores to well-known syntactic structures that exist within ASTs, our approach moves beyond prior techniques that perform token-level confidence mapping by offering a view of model confidence that directly aligns with programming language concepts with which developers are familiar. To put ASTrust into practice, we developed an automated visualization that illustrates the aggregated model confidence scores superimposed on sequence, heat-map, and graph-based visuals of syntactic structures from ASTs. We examine both the practical benefit that ASTrust can provide through a data science study on 12 popular LLMs on a curated set of GitHub repos and the usefulness of ASTrust through a human study.
Abstract:Video-based bug reports are increasingly being used to document bugs for programs centered around a graphical user interface (GUI). However, developing automated techniques to manage video-based reports is challenging as it requires identifying and understanding often nuanced visual patterns that capture key information about a reported bug. In this paper, we aim to overcome these challenges by advancing the bug report management task of duplicate detection for video-based reports. To this end, we introduce a new approach, called JANUS, that adapts the scene-learning capabilities of vision transformers to capture subtle visual and textual patterns that manifest on app UI screens - which is key to differentiating between similar screens for accurate duplicate report detection. JANUS also makes use of a video alignment technique capable of adaptive weighting of video frames to account for typical bug manifestation patterns. In a comprehensive evaluation on a benchmark containing 7,290 duplicate detection tasks derived from 270 video-based bug reports from 90 Android app bugs, the best configuration of our approach achieves an overall mRR/mAP of 89.8%/84.7%, and for the large majority of duplicate detection tasks, outperforms prior work by around 9% to a statistically significant degree. Finally, we qualitatively illustrate how the scene-learning capabilities provided by Janus benefits its performance.
Abstract:One of the most common solutions adopted by software researchers to address code generation is by training Large Language Models (LLMs) on massive amounts of source code. Although a number of studies have shown that LLMs have been effectively evaluated on popular accuracy metrics (e.g., BLEU, CodeBleu), previous research has largely overlooked the role of Causal Inference as a fundamental component of the interpretability of LLMs' performance. Existing benchmarks and datasets are meant to highlight the difference between the expected and the generated outcome, but do not take into account confounding variables (e.g., lines of code, prompt size) that equally influence the accuracy metrics. The fact remains that, when dealing with generative software tasks by LLMs, no benchmark is available to tell researchers how to quantify neither the causal effect of SE-based treatments nor the correlation of confounders to the model's performance. In an effort to bring statistical rigor to the evaluation of LLMs, this paper introduces a benchmarking strategy named Galeras comprised of curated testbeds for three SE tasks (i.e., code completion, code summarization, and commit generation) to help aid the interpretation of LLMs' performance. We illustrate the insights of our benchmarking strategy by conducting a case study on the performance of ChatGPT under distinct prompt engineering methods. The results of the case study demonstrate the positive causal influence of prompt semantics on ChatGPT's generative performance by an average treatment effect of $\approx 3\%$. Moreover, it was found that confounders such as prompt size are highly correlated with accuracy metrics ($\approx 0.412\%$). The end result of our case study is to showcase causal inference evaluations, in practice, to reduce confounding bias. By reducing the bias, we offer an interpretable solution for the accuracy metric under analysis.
Abstract:Large Language Models (LLMs) for code are a family of high-parameter, transformer-based neural networks pre-trained on massive datasets of both natural and programming languages. These models are rapidly being employed in commercial AI-based developer tools, such as GitHub CoPilot. However, measuring and explaining their effectiveness on programming tasks is a challenging proposition, given their size and complexity. The methods for evaluating and explaining LLMs for code are inextricably linked. That is, in order to explain a model's predictions, they must be reliably mapped to fine-grained, understandable concepts. Once this mapping is achieved, new methods for detailed model evaluations are possible. However, most current explainability techniques and evaluation benchmarks focus on model robustness or individual task performance, as opposed to interpreting model predictions. To this end, this paper introduces ASTxplainer, an explainability method specific to LLMs for code that enables both new methods for LLM evaluation and visualizations of LLM predictions that aid end-users in understanding model predictions. At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes, by extracting and aggregating normalized model logits within AST structures. To demonstrate the practical benefit of ASTxplainer, we illustrate the insights that our framework can provide by performing an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects. Additionally, we perform a user study examining the usefulness of an ASTxplainer-derived visualization of model predictions aimed at enabling model users to explain predictions. The results of these studies illustrate the potential for ASTxplainer to provide insights into LLM effectiveness, and aid end-users in understanding predictions.
Abstract:Neural Language Models of Code, or Neural Code Models (NCMs), are rapidly progressing from research prototypes to commercial developer tools. As such, understanding the capabilities and limitations of such models is becoming critical. However, the abilities of these models are typically measured using automated metrics that often only reveal a portion of their real-world performance. While, in general, the performance of NCMs appears promising, currently much is unknown about how such models arrive at decisions. To this end, this paper introduces $do_{code}$, a post-hoc interpretability methodology specific to NCMs that is capable of explaining model predictions. $do_{code}$ is based upon causal inference to enable programming language-oriented explanations. While the theoretical underpinnings of $do_{code}$ are extensible to exploring different model properties, we provide a concrete instantiation that aims to mitigate the impact of spurious correlations by grounding explanations of model behavior in properties of programming languages. To demonstrate the practical benefit of $do_{code}$, we illustrate the insights that our framework can provide by performing a case study on two popular deep learning architectures and nine NCMs. The results of this case study illustrate that our studied NCMs are sensitive to changes in code syntax and statistically learn to predict tokens related to blocks of code (e.g., brackets, parenthesis, semicolon) with less confounding bias as compared to other programming language constructs. These insights demonstrate the potential of $do_{code}$ as a useful model debugging mechanism that may aid in discovering biases and limitations in NCMs.
Abstract:Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
Abstract:When a bug manifests in a user-facing application, it is likely to be exposed through the graphical user interface (GUI). Given the importance of visual information to the process of identifying and understanding such bugs, users are increasingly making use of screenshots and screen-recordings as a means to report issues to developers. However, when such information is reported en masse, such as during crowd-sourced testing, managing these artifacts can be a time-consuming process. As the reporting of screen-recordings in particular becomes more popular, developers are likely to face challenges related to manually identifying videos that depict duplicate bugs. Due to their graphical nature, screen-recordings present challenges for automated analysis that preclude the use of current duplicate bug report detection techniques. To overcome these challenges and aid developers in this task, this paper presents Tango, a duplicate detection technique that operates purely on video-based bug reports by leveraging both visual and textual information. Tango combines tailored computer vision techniques, optical character recognition, and text retrieval. We evaluated multiple configurations of Tango in a comprehensive empirical evaluation on 4,860 duplicate detection tasks that involved a total of 180 screen-recordings from six Android apps. Additionally, we conducted a user study investigating the effort required for developers to manually detect duplicate video-based bug reports and compared this to the effort required to use Tango. The results reveal that Tango's optimal configuration is highly effective at detecting duplicate video-based bug reports, accurately ranking target duplicate videos in the top-2 returned results in 83% of the tasks. Additionally, our user study shows that, on average, Tango can reduce developer effort by over 60%, illustrating its practicality.
Abstract:Given the current transformative potential of research that sits at the intersection of Deep Learning (DL) and Software Engineering (SE), an NSF-sponsored community workshop was conducted in co-location with the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE'19) in San Diego, California. The goal of this workshop was to outline high priority areas for cross-cutting research. While a multitude of exciting directions for future work were identified, this report provides a general summary of the research areas representing the areas of highest priority which were discussed at the workshop. The intent of this report is to serve as a potential roadmap to guide future work that sits at the intersection of SE & DL.
Abstract:An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL). The popularity of such techniques largely stems from their automated feature engineering capabilities, which aid in modeling software artifacts. However, due to the rapid pace at which DL techniques have been adopted, it is difficult to distill the current successes, failures, and opportunities of the current research landscape. In an effort to bring clarity to this cross-cutting area of work, from its modern inception to the present, this paper presents a systematic literature review of research at the intersection of SE & DL. The review canvases work appearing in the most prominent SE and DL conferences and journals and spans 84 papers across 22 unique SE tasks. We center our analysis around the components of learning, a set of principles that govern the application of machine learning techniques (ML) to a given problem domain, discussing several aspects of the surveyed work at a granular level. The end result of our analysis is a research roadmap that both delineates the foundations of DL techniques applied to SE research, and likely areas of fertile exploration for the future.
Abstract:Screen recordings of mobile applications are easy to obtain and capture a wealth of information pertinent to software developers (e.g., bugs or feature requests), making them a popular mechanism for crowdsourced app feedback. Thus, these videos are becoming a common artifact that developers must manage. In light of unique mobile development constraints, including swift release cycles and rapidly evolving platforms, automated techniques for analyzing all types of rich software artifacts provide benefit to mobile developers. Unfortunately, automatically analyzing screen recordings presents serious challenges, due to their graphical nature, compared to other types of (textual) artifacts. To address these challenges, this paper introduces V2S, a lightweight, automated approach for translating video recordings of Android app usages into replayable scenarios. V2S is based primarily on computer vision techniques and adapts recent solutions for object detection and image classification to detect and classify user actions captured in a video, and convert these into a replayable test scenario. We performed an extensive evaluation of V2S involving 175 videos depicting 3,534 GUI-based actions collected from users exercising features and reproducing bugs from over 80 popular Android apps. Our results illustrate that V2S can accurately replay scenarios from screen recordings, and is capable of reproducing $\approx$ 89% of our collected videos with minimal overhead. A case study with three industrial partners illustrates the potential usefulness of V2S from the viewpoint of developers.