Abstract:Recent progress in Large Language Models (LLMs) has substantially advanced the automation of software engineering (SE) tasks, enabling complex activities such as code generation and code summarization. However, the black-box nature of LLMs remains a major barrier to their adoption in high-stakes and safety-critical domains, where explainability and transparency are vital for trust, accountability, and effective human supervision. Despite increasing interest in explainable AI for software engineering, existing methods lack domain-specific explanations aligned with how practitioners reason about SE artifacts. To address this gap, we introduce FeatureSHAP, the first fully automated, model-agnostic explainability framework tailored to software engineering tasks. Based on Shapley values, FeatureSHAP attributes model outputs to high-level input features through systematic input perturbation and task-specific similarity comparisons, while remaining compatible with both open-source and proprietary LLMs. We evaluate FeatureSHAP on two bi-modal SE tasks: code generation and code summarization. The results show that FeatureSHAP assigns less importance to irrelevant input features and produces explanations with higher fidelity than baseline methods. A practitioner survey involving 37 participants shows that FeatureSHAP helps practitioners better interpret model outputs and make more informed decisions. Collectively, FeatureSHAP represents a meaningful step toward practical explainable AI in software engineering. FeatureSHAP is available at https://github.com/deviserlab/FeatureSHAP.
Abstract:The success of large language models for code relies on vast amounts of code data, including public open-source repositories, such as GitHub, and private, confidential code from companies. This raises concerns about intellectual property compliance and the potential unauthorized use of license-restricted code. While membership inference (MI) techniques have been proposed to detect such unauthorized usage, their effectiveness can be undermined by semantically equivalent code transformation techniques, which modify code syntax while preserving semantic. In this work, we systematically investigate whether semantically equivalent code transformation rules might be leveraged to evade MI detection. The results reveal that model accuracy drops by only 1.5% in the worst case for each rule, demonstrating that transformed datasets can effectively serve as substitutes for fine-tuning. Additionally, we find that one of the rules (RenameVariable) reduces MI success by 10.19%, highlighting its potential to obscure the presence of restricted code. To validate these findings, we conduct a causal analysis confirming that variable renaming has the strongest causal effect in disrupting MI detection. Notably, we find that combining multiple transformations does not further reduce MI effectiveness. Our results expose a critical loophole in license compliance enforcement for training large language models for code, showing that MI detection can be substantially weakened by transformation-based obfuscation techniques.
Abstract:Large language models for code (LLM4Code) have greatly improved developer productivity but also raise privacy concerns due to their reliance on open-source repositories containing abundant personally identifiable information (PII). Prior work shows that commercial models can reproduce sensitive PII, yet existing studies largely treat PII as a single category and overlook the heterogeneous risks among different types. We investigate whether distinct PII types vary in their likelihood of being learned and leaked by LLM4Code, and whether this relationship is causal. Our methodology includes building a dataset with diverse PII types, fine-tuning representative models of different scales, computing training dynamics on real PII data, and formulating a structural causal model to estimate the causal effect of learnability on leakage. Results show that leakage risks differ substantially across PII types and correlate with their training dynamics: easy-to-learn instances such as IP addresses exhibit higher leakage, while harder types such as keys and passwords leak less frequently. Ambiguous types show mixed behaviors. This work provides the first causal evidence that leakage risks are type-dependent and offers guidance for developing type-aware and learnability-aware defenses for LLM4Code.
Abstract:In recent years, Language Models for Code (LLM4Code) have significantly changed the landscape of software engineering (SE) on downstream tasks, such as code generation, by making software development more efficient. Therefore, a growing interest has emerged in further evaluating these Language Models to homogenize the quality assessment of generated code. As the current evaluation process can significantly overreact on accuracy-based metrics, practitioners often seek methods to interpret LLM4Code outputs beyond canonical benchmarks. While the majority of research reports on code generation effectiveness in terms of expected ground truth, scant attention has been paid to LLMs' explanations. In essence, the decision-making process to generate code is hard to interpret. To bridge this evaluation gap, we introduce code rationales (Code$Q$), a technique with rigorous mathematical underpinning, to identify subsets of tokens that can explain individual code predictions. We conducted a thorough Exploratory Analysis to demonstrate the method's applicability and a User Study to understand the usability of code-based explanations. Our evaluation demonstrates that Code$Q$ is a powerful interpretability method to explain how (less) meaningful input concepts (i.e., natural language particle `at') highly impact output generation. Moreover, participants of this study highlighted Code$Q$'s ability to show a causal relationship between the input and output of the model with readable and informative explanations on code completion and test generation tasks. Additionally, Code$Q$ also helps to uncover model rationale, facilitating comparison with a human rationale to promote a fair level of trust and distrust in the model.




Abstract:Applications of Large Language Models (LLMs) are rapidly growing in industry and academia for various software engineering (SE) tasks. As these models become more integral to critical processes, ensuring their reliability and trustworthiness becomes essential. Consequently, the concept of trust in these systems is becoming increasingly critical. Well-calibrated trust is important, as excessive trust can lead to security vulnerabilities, and risks, while insufficient trust can hinder innovation. However, the landscape of trust-related concepts in LLMs in SE is relatively unclear, with concepts such as trust, distrust, and trustworthiness lacking clear conceptualizations in the SE community. To bring clarity to the current research status and identify opportunities for future work, we conducted a comprehensive review of $88$ papers: a systematic literature review of $18$ papers focused on LLMs in SE, complemented by an analysis of 70 papers from broader trust literature. Additionally, we conducted a survey study with 25 domain experts to gain insights into practitioners' understanding of trust and identify gaps between existing literature and developers' perceptions. The result of our analysis serves as a roadmap that covers trust-related concepts in LLMs in SE and highlights areas for future exploration.



Abstract:Deep learning-based code generation has completely transformed the way developers write programs today. Existing approaches to code generation have focused either on the Sequence-to-Sequence paradigm, which generates target code as a sequence of tokens, or the Sequence-to-Tree paradigm, which outputs code as a sequence of actions. While these two paradigms are intuitively complementary, their combination has not been previously explored. By comparing the code generated under these two paradigms, we find that integrating them holds significant potential. In this paper, we propose UniGenCoder for code-related generation tasks, which consists of a shared encoder, a shared decoder with a minimal set of additional parameters to unify two paradigms, and a selector that dynamically chooses optimal paradigm for each instance. Also, during the model training, we first perform the multi-task learning and distillation strategies to facilitate knowledge transfer between two paradigms, and then leverage contrastive learning to train the selector. Experimental results on the text-to-code and code-to-code generation tasks demonstrate the effectiveness of our proposed model. We release our code at https://github.com/DeepLearnXMU/UniGenCoder.
Abstract:The last decade has seen widespread adoption of Machine Learning (ML) components in software systems. This has occurred in nearly every domain, from natural language processing to computer vision. These ML components range from relatively simple neural networks to complex and resource-intensive large language models. However, despite this widespread adoption, little is known about the supply chain relationships that produce these models, which can have implications for compliance and security. In this work, we conduct an extensive analysis of 760,460 models and 175,000 datasets mined from the popular model-sharing site Hugging Face. First, we evaluate the current state of documentation in the Hugging Face supply chain, report real-world examples of shortcomings, and offer actionable suggestions for improvement. Next, we analyze the underlying structure of the extant supply chain. Finally, we explore the current licensing landscape against what was reported in prior work and discuss the unique challenges posed in this domain. Our results motivate multiple research avenues, including the need for better license management for ML models/datasets, better support for model documentation, and automated inconsistency checking and validation. We make our research infrastructure and dataset available to facilitate future research.



Abstract:Recent advancements in Large Language Models (LLMs) have paved the way for Large Code Models (LCMs), enabling automation in complex software engineering tasks, such as code generation, software testing, and program comprehension, among others. Tools like GitHub Copilot and ChatGPT have shown substantial benefits in supporting developers across various practices. However, the ambition to scale these models to trillion-parameter sizes, exemplified by GPT-4, poses significant challenges that limit the usage of Artificial Intelligence (AI)-based systems powered by large Deep Learning (DL) models. These include rising computational demands for training and deployment and issues related to trustworthiness, bias, and interpretability. Such factors can make managing these models impractical for many organizations, while their "black-box'' nature undermines key aspects, including transparency and accountability. In this paper, we question the prevailing assumption that increasing model parameters is always the optimal path forward, provided there is sufficient new data to learn additional patterns. In particular, we advocate for a Neurosymbolic research direction that combines the strengths of existing DL techniques (e.g., LLMs) with traditional symbolic methods--renowned for their reliability, speed, and determinism. To this end, we outline the core features and present preliminary results for our envisioned approach, aimed at establishing the first Neurosymbolic Program Comprehension (NsPC) framework to aid in identifying defective code components.




Abstract:Large Language Models (LLMs) have shown significant potential in automating software engineering tasks, particularly in code generation. However, current evaluation benchmarks, which primarily focus on accuracy, fall short in assessing the quality of the code generated by these models, specifically their tendency to produce code smells. To address this limitation, we introduce CodeSmellEval, a benchmark designed to evaluate the propensity of LLMs for generating code smells. Our benchmark includes a novel metric: Propensity Smelly Score (PSC), and a curated dataset of method-level code smells: CodeSmellData. To demonstrate the use of CodeSmellEval, we conducted a case study with two state-of-the-art LLMs, CodeLlama and Mistral. The results reveal that both models tend to generate code smells, such as simplifiable-condition and consider-merging-isinstance. These findings highlight the effectiveness of our benchmark in evaluating LLMs, providing valuable insights into their reliability and their propensity to introduce code smells in code generation tasks.




Abstract:Traceability is a cornerstone of modern software development, ensuring system reliability and facilitating software maintenance. While unsupervised techniques leveraging Information Retrieval (IR) and Machine Learning (ML) methods have been widely used for predicting trace links, their effectiveness remains underexplored. In particular, these techniques often assume traceability patterns are present within textual data - a premise that may not hold universally. Moreover, standard evaluation metrics such as precision, recall, accuracy, or F1 measure can misrepresent the model performance when underlying data distributions are not properly analyzed. Given that automated traceability techniques tend to struggle to establish links, we need further insight into the information limits related to traceability artifacts. In this paper, we propose an approach, TraceXplainer, for using information theory metrics to evaluate and better understand the performance (limits) of unsupervised traceability techniques. Specifically, we introduce self-information, cross-entropy, and mutual information (MI) as metrics to measure the informativeness and reliability of traceability links. Through a comprehensive replication and analysis of well-studied datasets and techniques, we investigate the effectiveness of unsupervised techniques that predict traceability links using IR/ML. This application of TraceXplainer illustrates an imbalance in typical traceability datasets where the source code has on average 1.48 more information bits (i.e., entropy) than the linked documentation. Additionally, we demonstrate that an average MI of 4.81 bits, loss of 1.75, and noise of 0.28 bits signify that there are information-theoretic limits on the effectiveness of unsupervised traceability techniques. We hope these findings spur additional research on understanding the limits and progress of traceability research.