Abstract:Traceability is a cornerstone of modern software development, ensuring system reliability and facilitating software maintenance. While unsupervised techniques leveraging Information Retrieval (IR) and Machine Learning (ML) methods have been widely used for predicting trace links, their effectiveness remains underexplored. In particular, these techniques often assume traceability patterns are present within textual data - a premise that may not hold universally. Moreover, standard evaluation metrics such as precision, recall, accuracy, or F1 measure can misrepresent the model performance when underlying data distributions are not properly analyzed. Given that automated traceability techniques tend to struggle to establish links, we need further insight into the information limits related to traceability artifacts. In this paper, we propose an approach, TraceXplainer, for using information theory metrics to evaluate and better understand the performance (limits) of unsupervised traceability techniques. Specifically, we introduce self-information, cross-entropy, and mutual information (MI) as metrics to measure the informativeness and reliability of traceability links. Through a comprehensive replication and analysis of well-studied datasets and techniques, we investigate the effectiveness of unsupervised techniques that predict traceability links using IR/ML. This application of TraceXplainer illustrates an imbalance in typical traceability datasets where the source code has on average 1.48 more information bits (i.e., entropy) than the linked documentation. Additionally, we demonstrate that an average MI of 4.81 bits, loss of 1.75, and noise of 0.28 bits signify that there are information-theoretic limits on the effectiveness of unsupervised traceability techniques. We hope these findings spur additional research on understanding the limits and progress of traceability research.
Abstract:Context: Machine Learning (ML) significantly impacts Software Engineering (SE), but studies mainly focus on practitioners, neglecting researchers. This overlooks practices and challenges in teaching, researching, or reviewing ML applications in SE. Objective: This study aims to contribute to the knowledge, about the synergy between ML and SE from the perspective of SE researchers, by providing insights into the practices followed when researching, teaching, and reviewing SE studies that apply ML. Method: We analyzed SE researchers familiar with ML or who authored SE articles using ML, along with the articles themselves. We examined practices, SE tasks addressed with ML, challenges faced, and reviewers' and educators' perspectives using grounded theory coding and qualitative analysis. Results: We found diverse practices focusing on data collection, model training, and evaluation. Some recommended practices (e.g., hyperparameter tuning) appeared in less than 20\% of literature. Common challenges involve data handling, model evaluation (incl. non-functional properties), and involving human expertise in evaluation. Hands-on activities are common in education, though traditional methods persist. Conclusion: Despite accepted practices in applying ML to SE, significant gaps remain. By enhancing guidelines, adopting diverse teaching methods, and emphasizing underrepresented practices, the SE community can bridge these gaps and advance the field.
Abstract:Generative AI (GenAI) tools have already started to transform software development practices. Despite their utility in tasks such as writing code, the use of these tools raises important legal questions and potential risks, particularly those associated with copyright law. In the midst of this uncertainty, this paper presents a study jointly conducted by software engineering and legal researchers that surveyed 574 GitHub developers who use GenAI tools for development activities. The survey and follow-up interviews probed the developers' opinions on emerging legal issues as well as their perception of copyrightability, ownership of generated code, and related considerations. We also investigate potential developer misconceptions, the impact of GenAI on developers' work, and developers' awareness of licensing/copyright risks. Qualitative and quantitative analysis showed that developers' opinions on copyright issues vary broadly and that many developers are aware of the nuances these legal questions involve. We provide: (1) a survey of 574 developers on the licensing and copyright aspects of GenAI for coding, (2) a snapshot of practitioners' views at a time when GenAI and perceptions of it are rapidly evolving, and (3) an analysis of developers' views, yielding insights and recommendations that can inform future regulatory decisions in this evolving field.
Abstract:Trustworthiness and interpretability are inextricably linked concepts for LLMs. The more interpretable an LLM is, the more trustworthy it becomes. However, current techniques for interpreting LLMs when applied to code-related tasks largely focus on accuracy measurements, measures of how models react to change, or individual task performance instead of the fine-grained explanations needed at prediction time for greater interpretability, and hence trust. To improve upon this status quo, this paper introduces ASTrust, an interpretability method for LLMs of code that generates explanations grounded in the relationship between model confidence and syntactic structures of programming languages. ASTrust explains generated code in the context of syntax categories based on Abstract Syntax Trees and aids practitioners in understanding model predictions at both local (individual code snippets) and global (larger datasets of code) levels. By distributing and assigning model confidence scores to well-known syntactic structures that exist within ASTs, our approach moves beyond prior techniques that perform token-level confidence mapping by offering a view of model confidence that directly aligns with programming language concepts with which developers are familiar. To put ASTrust into practice, we developed an automated visualization that illustrates the aggregated model confidence scores superimposed on sequence, heat-map, and graph-based visuals of syntactic structures from ASTs. We examine both the practical benefit that ASTrust can provide through a data science study on 12 popular LLMs on a curated set of GitHub repos and the usefulness of ASTrust through a human study.
Abstract:Video-based bug reports are increasingly being used to document bugs for programs centered around a graphical user interface (GUI). However, developing automated techniques to manage video-based reports is challenging as it requires identifying and understanding often nuanced visual patterns that capture key information about a reported bug. In this paper, we aim to overcome these challenges by advancing the bug report management task of duplicate detection for video-based reports. To this end, we introduce a new approach, called JANUS, that adapts the scene-learning capabilities of vision transformers to capture subtle visual and textual patterns that manifest on app UI screens - which is key to differentiating between similar screens for accurate duplicate report detection. JANUS also makes use of a video alignment technique capable of adaptive weighting of video frames to account for typical bug manifestation patterns. In a comprehensive evaluation on a benchmark containing 7,290 duplicate detection tasks derived from 270 video-based bug reports from 90 Android app bugs, the best configuration of our approach achieves an overall mRR/mAP of 89.8%/84.7%, and for the large majority of duplicate detection tasks, outperforms prior work by around 9% to a statistically significant degree. Finally, we qualitatively illustrate how the scene-learning capabilities provided by Janus benefits its performance.
Abstract:One of the most common solutions adopted by software researchers to address code generation is by training Large Language Models (LLMs) on massive amounts of source code. Although a number of studies have shown that LLMs have been effectively evaluated on popular accuracy metrics (e.g., BLEU, CodeBleu), previous research has largely overlooked the role of Causal Inference as a fundamental component of the interpretability of LLMs' performance. Existing benchmarks and datasets are meant to highlight the difference between the expected and the generated outcome, but do not take into account confounding variables (e.g., lines of code, prompt size) that equally influence the accuracy metrics. The fact remains that, when dealing with generative software tasks by LLMs, no benchmark is available to tell researchers how to quantify neither the causal effect of SE-based treatments nor the correlation of confounders to the model's performance. In an effort to bring statistical rigor to the evaluation of LLMs, this paper introduces a benchmarking strategy named Galeras comprised of curated testbeds for three SE tasks (i.e., code completion, code summarization, and commit generation) to help aid the interpretation of LLMs' performance. We illustrate the insights of our benchmarking strategy by conducting a case study on the performance of ChatGPT under distinct prompt engineering methods. The results of the case study demonstrate the positive causal influence of prompt semantics on ChatGPT's generative performance by an average treatment effect of $\approx 3\%$. Moreover, it was found that confounders such as prompt size are highly correlated with accuracy metrics ($\approx 0.412\%$). The end result of our case study is to showcase causal inference evaluations, in practice, to reduce confounding bias. By reducing the bias, we offer an interpretable solution for the accuracy metric under analysis.
Abstract:Large Language Models (LLMs) for code are a family of high-parameter, transformer-based neural networks pre-trained on massive datasets of both natural and programming languages. These models are rapidly being employed in commercial AI-based developer tools, such as GitHub CoPilot. However, measuring and explaining their effectiveness on programming tasks is a challenging proposition, given their size and complexity. The methods for evaluating and explaining LLMs for code are inextricably linked. That is, in order to explain a model's predictions, they must be reliably mapped to fine-grained, understandable concepts. Once this mapping is achieved, new methods for detailed model evaluations are possible. However, most current explainability techniques and evaluation benchmarks focus on model robustness or individual task performance, as opposed to interpreting model predictions. To this end, this paper introduces ASTxplainer, an explainability method specific to LLMs for code that enables both new methods for LLM evaluation and visualizations of LLM predictions that aid end-users in understanding model predictions. At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes, by extracting and aggregating normalized model logits within AST structures. To demonstrate the practical benefit of ASTxplainer, we illustrate the insights that our framework can provide by performing an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects. Additionally, we perform a user study examining the usefulness of an ASTxplainer-derived visualization of model predictions aimed at enabling model users to explain predictions. The results of these studies illustrate the potential for ASTxplainer to provide insights into LLM effectiveness, and aid end-users in understanding predictions.
Abstract:Neural Language Models of Code, or Neural Code Models (NCMs), are rapidly progressing from research prototypes to commercial developer tools. As such, understanding the capabilities and limitations of such models is becoming critical. However, the abilities of these models are typically measured using automated metrics that often only reveal a portion of their real-world performance. While, in general, the performance of NCMs appears promising, currently much is unknown about how such models arrive at decisions. To this end, this paper introduces $do_{code}$, a post-hoc interpretability methodology specific to NCMs that is capable of explaining model predictions. $do_{code}$ is based upon causal inference to enable programming language-oriented explanations. While the theoretical underpinnings of $do_{code}$ are extensible to exploring different model properties, we provide a concrete instantiation that aims to mitigate the impact of spurious correlations by grounding explanations of model behavior in properties of programming languages. To demonstrate the practical benefit of $do_{code}$, we illustrate the insights that our framework can provide by performing a case study on two popular deep learning architectures and nine NCMs. The results of this case study illustrate that our studied NCMs are sensitive to changes in code syntax and statistically learn to predict tokens related to blocks of code (e.g., brackets, parenthesis, semicolon) with less confounding bias as compared to other programming language constructs. These insights demonstrate the potential of $do_{code}$ as a useful model debugging mechanism that may aid in discovering biases and limitations in NCMs.
Abstract:Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
Abstract:When a bug manifests in a user-facing application, it is likely to be exposed through the graphical user interface (GUI). Given the importance of visual information to the process of identifying and understanding such bugs, users are increasingly making use of screenshots and screen-recordings as a means to report issues to developers. However, when such information is reported en masse, such as during crowd-sourced testing, managing these artifacts can be a time-consuming process. As the reporting of screen-recordings in particular becomes more popular, developers are likely to face challenges related to manually identifying videos that depict duplicate bugs. Due to their graphical nature, screen-recordings present challenges for automated analysis that preclude the use of current duplicate bug report detection techniques. To overcome these challenges and aid developers in this task, this paper presents Tango, a duplicate detection technique that operates purely on video-based bug reports by leveraging both visual and textual information. Tango combines tailored computer vision techniques, optical character recognition, and text retrieval. We evaluated multiple configurations of Tango in a comprehensive empirical evaluation on 4,860 duplicate detection tasks that involved a total of 180 screen-recordings from six Android apps. Additionally, we conducted a user study investigating the effort required for developers to manually detect duplicate video-based bug reports and compared this to the effort required to use Tango. The results reveal that Tango's optimal configuration is highly effective at detecting duplicate video-based bug reports, accurately ranking target duplicate videos in the top-2 returned results in 83% of the tasks. Additionally, our user study shows that, on average, Tango can reduce developer effort by over 60%, illustrating its practicality.