Abstract:Artificial Intelligence (AI) significantly influences many fields, largely thanks to the vast amounts of high-quality data for machine learning models. The emphasis is now on a data-centric AI strategy, prioritizing data development over model design progress. Automating this process is crucial. In this paper, we serve as the first work to introduce the automatic data-centric development (AD^2) task and outline its core challenges, which require domain-experts-like task scheduling and implementation capability, largely unexplored by previous work. By leveraging the strong complex problem-solving capabilities of large language models (LLMs), we propose an LLM-based autonomous agent, equipped with a strategy named Collaborative Knowledge-STudying-Enhanced Evolution by Retrieval (Co-STEER), to simultaneously address all the challenges. Specifically, our proposed Co-STEER agent enriches its domain knowledge through our proposed evolving strategy and develops both its scheduling and implementation skills by accumulating and retrieving domain-specific practical experience. With an improved schedule, the capability for implementation accelerates. Simultaneously, as implementation feedback becomes more thorough, the scheduling accuracy increases. These two capabilities evolve together through practical feedback, enabling a collaborative evolution process. Extensive experimental results demonstrate that our Co-STEER agent breaks new ground in AD^2 research, possesses strong evolvable schedule and implementation ability, and demonstrates the significant effectiveness of its components. Our Co-STEER paves the way for AD^2 advancements.
Abstract:The progress of humanity is driven by those successful discoveries accompanied by countless failed experiments. Researchers often seek the potential research directions by reading and then verifying them through experiments. The process imposes a significant burden on researchers. In the past decade, the data-driven black-box deep learning method demonstrates its effectiveness in a wide range of real-world scenarios, which exacerbates the experimental burden of researchers and thus renders the potential successful discoveries veiled. Therefore, automating such a research and development (R&D) process is an urgent need. In this paper, we serve as the first effort to formalize the goal by proposing a Real-world Data-centric automatic R&D Benchmark, namely RD2Bench. RD2Bench benchmarks all the operations in data-centric automatic R&D (D-CARD) as a whole to navigate future work toward our goal directly. We focuses on evaluating the interaction and synergistic effects of various model capabilities and aiding to select the well-performed trustworthy models. Although RD2Bench is very challenging to the state-of-the-art (SOTA) large language model (LLM) named GPT-4, indicating ample research opportunities and more research efforts, LLMs possess promising potential to bring more significant development to D-CARD: They are able to implement some simple methods without adopting any additional techniques. We appeal to future work to take developing techniques for tackling automatic R&D into consideration, thus bringing the opportunities of the potential revolutionary upgrade to human productivity.
Abstract:Optimizing deep neural networks is one of the main tasks in successful deep learning. Current state-of-the-art optimizers are adaptive gradient-based optimization methods such as Adam. Recently, there has been an increasing interest in formulating gradient-based optimizers in a probabilistic framework for better estimation of gradients and modeling uncertainties. Here, we propose to combine both approaches, resulting in the Variational Stochastic Gradient Descent (VSGD) optimizer. We model gradient updates as a probabilistic model and utilize stochastic variational inference (SVI) to derive an efficient and effective update rule. Further, we show how our VSGD method relates to other adaptive gradient-based optimizers like Adam. Lastly, we carry out experiments on two image classification datasets and four deep neural network architectures, where we show that VSGD outperforms Adam and SGD.
Abstract:Test-time adaptation (TTA) aims to adapt a model, initially trained on training data, to potential distribution shifts in the test data. Most existing TTA studies, however, focus on classification tasks, leaving a notable gap in the exploration of TTA for semantic segmentation. This pronounced emphasis on classification might lead numerous newcomers and engineers to mistakenly assume that classic TTA methods designed for classification can be directly applied to segmentation. Nonetheless, this assumption remains unverified, posing an open question. To address this, we conduct a systematic, empirical study to disclose the unique challenges of segmentation TTA, and to determine whether classic TTA strategies can effectively address this task. Our comprehensive results have led to three key observations. First, the classic batch norm updating strategy, commonly used in classification TTA, only brings slight performance improvement, and in some cases it might even adversely affect the results. Even with the application of advanced distribution estimation techniques like batch renormalization, the problem remains unresolved. Second, the teacher-student scheme does enhance training stability for segmentation TTA in the presence of noisy pseudo-labels. However, it cannot directly result in performance improvement compared to the original model without TTA. Third, segmentation TTA suffers a severe long-tailed imbalance problem, which is substantially more complex than that in TTA for classification. This long-tailed challenge significantly affects segmentation TTA performance, even when the accuracy of pseudo-labels is high. In light of these observations, we conclude that TTA for segmentation presents significant challenges, and simply using classic TTA methods cannot address this problem well.
Abstract:Document-level relation extraction (DocRE) attracts more research interest recently. While models achieve consistent performance gains in DocRE, their underlying decision rules are still understudied: Do they make the right predictions according to rationales? In this paper, we take the first step toward answering this question and then introduce a new perspective on comprehensively evaluating a model. Specifically, we first conduct annotations to provide the rationales considered by humans in DocRE. Then, we conduct investigations and reveal the fact that: In contrast to humans, the representative state-of-the-art (SOTA) models in DocRE exhibit different decision rules. Through our proposed RE-specific attacks, we next demonstrate that the significant discrepancy in decision rules between models and humans severely damages the robustness of models and renders them inapplicable to real-world RE scenarios. After that, we introduce mean average precision (MAP) to evaluate the understanding and reasoning capabilities of models. According to the extensive experimental results, we finally appeal to future work to consider evaluating both performance and the understanding ability of models for the development of their applications. We make our annotations and code publicly available.
Abstract:Federated domain adaptation (FDA) aims to collaboratively transfer knowledge from source clients (domains) to the related but different target client, without communicating the local data of any client. Moreover, the source clients have different data distributions, leading to extremely challenging in knowledge transfer. Despite the recent progress in FDA, we empirically find that existing methods can not leverage models of heterogeneous domains and thus they fail to achieve excellent performance. In this paper, we propose a model-based method named FDAC, aiming to address {\bf F}ederated {\bf D}omain {\bf A}daptation based on {\bf C}ontrastive learning and Vision Transformer (ViT). In particular, contrastive learning can leverage the unlabeled data to train excellent models and the ViT architecture performs better than convolutional neural networks (CNNs) in extracting adaptable features. To the best of our knowledge, FDAC is the first attempt to learn transferable representations by manipulating the latent architecture of ViT under the federated setting. Furthermore, FDAC can increase the target data diversity by compensating from each source model with insufficient knowledge of samples and features, based on domain augmentation and semantic matching. Extensive experiments on several real datasets demonstrate that FDAC outperforms all the comparative methods in most conditions. Moreover, FDCA can also improve communication efficiency which is another key factor in the federated setting.
Abstract:Along with the rapid evolution of mobile communication technologies, such as 5G, there has been a drastically increase in telecom fraud, which significantly dissipates individual fortune and social wealth. In recent years, graph mining techniques are gradually becoming a mainstream solution for detecting telecom fraud. However, the graph imbalance problem, caused by the Pareto principle, brings severe challenges to graph data mining. This is a new and challenging problem, but little previous work has been noticed. In this paper, we propose a Graph ATtention network with COst-sensitive BOosting (GAT-COBO) for the graph imbalance problem. First, we design a GAT-based base classifier to learn the embeddings of all nodes in the graph. Then, we feed the embeddings into a well-designed cost-sensitive learner for imbalanced learning. Next, we update the weights according to the misclassification cost to make the model focus more on the minority class. Finally, we sum the node embeddings obtained by multiple cost-sensitive learners to obtain a comprehensive node representation, which is used for the downstream anomaly detection task. Extensive experiments on two real-world telecom fraud detection datasets demonstrate that our proposed method is effective for the graph imbalance problem, outperforming the state-of-the-art GNNs and GNN-based fraud detectors. In addition, our model is also helpful for solving the widespread over-smoothing problem in GNNs. The GAT-COBO code and datasets are available at https://github.com/xxhu94/GAT-COBO.
Abstract:With the rapid development of mobile networks, the people's social contacts have been considerably facilitated. However, the rise of mobile social network fraud upon those networks, has caused a great deal of distress, in case of depleting personal and social wealth, then potentially doing significant economic harm. To detect fraudulent users, call detail record (CDR) data, which portrays the social behavior of users in mobile networks, has been widely utilized. But the imbalance problem in the aforementioned data, which could severely hinder the effectiveness of fraud detectors based on graph neural networks(GNN), has hardly been addressed in previous work. In this paper, we are going to present a novel Cost-Sensitive Graph Neural Network (CSGNN) by creatively combining cost-sensitive learning and graph neural networks. We conduct extensive experiments on two open-source realworld mobile network fraud datasets. The results show that CSGNN can effectively solve the graph imbalance problem and then achieve better detection performance than the state-of-the-art algorithms. We believe that our research can be applied to solve the graph imbalance problems in other fields. The CSGNN code and datasets are publicly available at https://github.com/xxhu94/CSGNN.
Abstract:Gender bias in language models has attracted sufficient attention because it threatens social justice. However, most of the current debiasing methods degraded the model's performance on other tasks while the degradation mechanism is still mysterious. We propose a theoretical framework explaining the three candidate mechanisms of the language model's gender bias. We use our theoretical framework to explain why the current debiasing methods cause performance degradation. We also discover a pathway through which debiasing will not degrade the model performance. We further develop a causality-detection fine-tuning approach to correct gender bias. The numerical experiment demonstrates that our method is able to lead to double dividends: partially mitigating gender bias while avoiding performance degradation.
Abstract:Legal judgment Prediction (LJP), aiming to predict a judgment based on fact descriptions, serves as legal assistance to mitigate the great work burden of limited legal practitioners. Most existing methods apply various large-scale pre-trained language models (PLMs) finetuned in LJP tasks to obtain consistent improvements. However, we discover the fact that the state-of-the-art (SOTA) model makes judgment predictions according to wrong (or non-casual) information, which not only weakens the model's generalization capability but also results in severe social problems like discrimination. Here, we analyze the causal mechanism misleading the LJP model to learn the spurious correlations, and then propose a framework to guide the model to learn the underlying causality knowledge in the legal texts. Specifically, we first perform open information extraction (OIE) to refine the text having a high proportion of causal information, according to which we generate a new set of data. Then, we design a model learning the weights of the refined data and the raw data for LJP model training. The extensive experimental results show that our model is more generalizable and robust than the baselines and achieves a new SOTA performance on two commonly used legal-specific datasets.