Abstract:Large Language Models (LLMs) have advanced rapidly in recent years, with their applications in software engineering expanding to more complex repository-level tasks. GitHub issue resolving is a key challenge among these tasks. While recent approaches have made progress on this task, they focus on textual data within issues, neglecting visual data. However, this visual data is crucial for resolving issues as it conveys additional knowledge that text alone cannot. We propose CodeV, the first approach to leveraging visual data to enhance the issue-resolving capabilities of LLMs. CodeV resolves each issue by following a two-phase process: data processing and patch generation. To evaluate CodeV, we construct a benchmark for visual issue resolving, namely Visual SWE-bench. Through extensive experiments, we demonstrate the effectiveness of CodeV, as well as provide valuable insights into leveraging visual data to resolve GitHub issues.
Abstract:Urban flow prediction is a classic spatial-temporal forecasting task that estimates the amount of future traffic flow for a given location. Though models represented by Spatial-Temporal Graph Neural Networks (STGNNs) have established themselves as capable predictors, they tend to suffer from distribution shifts that are common with the urban flow data due to the dynamics and unpredictability of spatial-temporal events. Unfortunately, in spatial-temporal applications, the dynamic environments can hardly be quantified via a fixed number of parameters, whereas learning time- and location-specific environments can quickly become computationally prohibitive. In this paper, we propose a novel framework named Memory-enhanced Invariant Prompt learning (MIP) for urban flow prediction under constant distribution shifts. Specifically, MIP is equipped with a learnable memory bank that is trained to memorize the causal features within the spatial-temporal graph. By querying a trainable memory bank that stores the causal features, we adaptively extract invariant and variant prompts (i.e., patterns) for a given location at every time step. Then, instead of intervening the raw data based on simulated environments, we directly perform intervention on variant prompts across space and time. With the intervened variant prompts in place, we use invariant learning to minimize the variance of predictions, so as to ensure that the predictions are only made with invariant features. With extensive comparative experiments on two public urban flow datasets, we thoroughly demonstrate the robustness of MIP against OOD data.
Abstract:The rapid spread of rumors on social media has posed significant challenges to maintaining public trust and information integrity. Since an information cascade process is essentially a propagation tree, recent rumor detection models leverage graph neural networks to additionally capture information propagation patterns, thus outperforming text-only solutions. Given the variations in topics and social impact of the root node, different source information naturally has distinct outreach capabilities, resulting in different heights of propagation trees. This variation, however, impedes the data-driven design of existing graph-based rumor detectors. Given a shallow propagation tree with limited interactions, it is unlikely for graph-based approaches to capture sufficient cascading patterns, questioning their ability to handle less popular news or early detection needs. In contrast, a deep propagation tree is prone to noisy user responses, and this can in turn obfuscate the predictions. In this paper, we propose a novel Epidemiology-informed Network (EIN) that integrates epidemiological knowledge to enhance performance by overcoming data-driven methods sensitivity to data quality. Meanwhile, to adapt epidemiology theory to rumor detection, it is expected that each users stance toward the source information will be annotated. To bypass the costly and time-consuming human labeling process, we take advantage of large language models to generate stance labels, facilitating optimization objectives for learning epidemiology-informed representations. Our experimental results demonstrate that the proposed EIN not only outperforms state-of-the-art methods on real-world datasets but also exhibits enhanced robustness across varying tree depths.
Abstract:In the future sixth-generation (6G) era, to support accurate localization sensing and efficient communication link establishment for intelligent agents, a comprehensive understanding of the surrounding environment and proper channel modeling are indispensable. The existing method, which solely exploits radio frequency (RF) communication information, is difficult to accomplish accurate channel modeling. Fortunately, multi-modal devices are deployed on intelligent agents to obtain environmental features, which could further assist in channel modeling. Currently, some research efforts have been devoted to utilizing multi-modal information to facilitate channel modeling, while still lack a comprehensive review. To fill this gap, we embark on an initial endeavor with the goal of reviewing multi-modal intelligent channel modeling (MMICM) via Synesthesia of Machines (SoM). Compared to channel modeling approaches that solely utilize RF communication information, the utilization of multi-modal information can provide a more in-depth understanding of the propagation environment around the transceiver, thus facilitating more accurate channel modeling. First, this paper introduces existing channel modeling approaches from the perspective of the channel modeling evolution. Then, we have elaborated and investigated recent advances in the topic of capturing typical channel characteristics and features, i.e., channel non-stationarity and consistency, by characterizing the mathematical, spatial, coupling, and mapping relationships. In addition, applications that can be supported by MMICM are summarized and analyzed. To corroborate the superiority of MMICM via SoM, we give the simulation result and analysis. Finally, some open issues and potential directions for the MMICM are outlined from the perspectives of measurements, modeling, and applications.
Abstract:Large Language Models (LLMs) may suffer from hallucinations in real-world applications due to the lack of relevant knowledge. In contrast, knowledge graphs encompass extensive, multi-relational structures that store a vast array of symbolic facts. Consequently, integrating LLMs with knowledge graphs has been extensively explored, with Knowledge Graph Question Answering (KGQA) serving as a critical touchstone for the integration. This task requires LLMs to answer natural language questions by retrieving relevant triples from knowledge graphs. However, existing methods face two significant challenges: \textit{excessively long reasoning paths distracting from the answer generation}, and \textit{false-positive relations hindering the path refinement}. In this paper, we propose an iterative interactive KGQA framework that leverages the interactive learning capabilities of LLMs to perform reasoning and Debating over Graphs (DoG). Specifically, DoG employs a subgraph-focusing mechanism, allowing LLMs to perform answer trying after each reasoning step, thereby mitigating the impact of lengthy reasoning paths. On the other hand, DoG utilizes a multi-role debate team to gradually simplify complex questions, reducing the influence of false-positive relations. This debate mechanism ensures the reliability of the reasoning process. Experimental results on five public datasets demonstrate the effectiveness and superiority of our architecture. Notably, DoG outperforms the state-of-the-art method ToG by 23.7\% and 9.1\% in accuracy on WebQuestions and GrailQA, respectively. Furthermore, the integration experiments with various LLMs on the mentioned datasets highlight the flexibility of DoG. Code is available at \url{https://github.com/reml-group/DoG}.
Abstract:Urban flow prediction is a spatio-temporal modeling task that estimates the throughput of transportation services like buses, taxis, and ride-sharing, where data-driven models have become the most popular solution in the past decade. Meanwhile, the implicitly learned mapping between historical observations to the prediction targets tend to over-simplify the dynamics of real-world urban flows, leading to suboptimal predictions. Some recent spatio-temporal prediction solutions bring remedies with the notion of physics-guided machine learning (PGML), which describes spatio-temporal data with nuanced and principled physics laws, thus enhancing both the prediction accuracy and interpretability. However, these spatio-temporal PGML methods are built upon a strong assumption that the observed data fully conforms to the differential equations that define the physical system, which can quickly become ill-posed in urban flow prediction tasks. The observed urban flow data, especially when sliced into time-dependent snapshots to facilitate predictions, is typically incomplete and sparse, and prone to inherent noise incurred in the collection process. As a result, such physical inconsistency between the data and PGML model significantly limits the predictive power and robustness of the solution. Moreover, due to the interval-based predictions and intermittent nature of data filing in many transportation services, the instantaneous dynamics of urban flows can hardly be captured, rendering differential equation-based continuous modeling a loose fit for this setting. To overcome the challenges, we develop a discretized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR) to enhance PN. Experimental results in four real-world datasets demonstrate that our method achieves state-of-the-art performance with a demonstrable improvement in robustness.
Abstract:Food recommendation systems serve as pivotal components in the realm of digital lifestyle services, designed to assist users in discovering recipes and food items that resonate with their unique dietary predilections. Typically, multi-modal descriptions offer an exhaustive profile for each recipe, thereby ensuring recommendations that are both personalized and accurate. Our preliminary investigation of two datasets indicates that pre-trained multi-modal dense representations might precipitate a deterioration in performance compared to ID features when encapsulating interactive relationships. This observation implies that ID features possess a relative superiority in modeling interactive collaborative signals. Consequently, contemporary cutting-edge methodologies augment ID features with multi-modal information as supplementary features, overlooking the latent semantic relations between recipes. To rectify this, we present CLUSSL, a novel food recommendation framework that employs clustering and self-supervised learning. Specifically, CLUSSL formulates a modality-specific graph tailored to each modality with discrete/continuous features, thereby transforming semantic features into structural representation. Furthermore, CLUSSL procures recipe representations pertinent to different modalities via graph convolutional operations. A self-supervised learning objective is proposed to foster independence between recipe representations derived from different unimodal graphs. Comprehensive experiments on real-world datasets substantiate that CLUSSL consistently surpasses state-of-the-art recommendation benchmarks in performance.
Abstract:Since the creation of the Web, recommender systems (RSs) have been an indispensable mechanism in information filtering. State-of-the-art RSs primarily depend on categorical features, which ecoded by embedding vectors, resulting in excessively large embedding tables. To prevent over-parameterized embedding tables from harming scalability, both academia and industry have seen increasing efforts in compressing RS embeddings. However, despite the prosperity of lightweight embedding-based RSs (LERSs), a wide diversity is seen in evaluation protocols, resulting in obstacles when relating LERS performance to real-world usability. Moreover, despite the common goal of lightweight embeddings, LERSs are evaluated with a single choice between the two main recommendation tasks -- collaborative filtering and content-based recommendation. This lack of discussions on cross-task transferability hinders the development of unified, more scalable solutions. Motivated by these issues, this study investigates various LERSs' performance, efficiency, and cross-task transferability via a thorough benchmarking process. Additionally, we propose an efficient embedding compression method using magnitude pruning, which is an easy-to-deploy yet highly competitive baseline that outperforms various complex LERSs. Our study reveals the distinct performance of LERSs across the two tasks, shedding light on their effectiveness and generalizability. To support edge-based recommendations, we tested all LERSs on a Raspberry Pi 4, where the efficiency bottleneck is exposed. Finally, we conclude this paper with critical summaries of LERS performance, model selection suggestions, and underexplored challenges around LERSs for future research. To encourage future research, we publish source codes and artifacts at \href{this link}{https://github.com/chenxing1999/recsys-benchmark}.
Abstract:Graph neural networks (GNNs) are currently one of the most performant collaborative filtering methods. Meanwhile, owing to the use of an embedding table to represent each user/item as a distinct vector, GNN-based recommenders have inherited the long-standing defect of parameter inefficiency. As a common practice for scalable embeddings, parameter sharing enables the use of fewer embedding vectors (i.e., meta-embeddings). When assigning meta-embeddings, most existing methods are a heuristically designed, predefined mapping from each user's/item's ID to the corresponding meta-embedding indexes, thus simplifying the optimization problem into learning only the meta-embeddings. However, in the context of GNN-based collaborative filtering, such a fixed mapping omits the semantic correlations between entities that are evident in the user-item interaction graph, leading to suboptimal recommendation performance. To this end, we propose Lightweight Embeddings for Graph Collaborative Filtering (LEGCF), a parameter-efficient embedding framework dedicated to GNN-based recommenders. LEGCF innovatively introduces an assignment matrix as an extra learnable component on top of meta-embeddings. To jointly optimize these two heavily entangled components, aside from learning the meta-embeddings by minimizing the recommendation loss, LEGCF further performs efficient assignment update by enforcing a novel semantic similarity constraint and finding its closed-form solution based on matrix pseudo-inverse. The meta-embeddings and assignment matrix are alternately updated, where the latter is sparsified on the fly to ensure negligible storage overhead. Extensive experiments on three benchmark datasets have verified LEGCF's smallest trade-off between size and performance, with consistent accuracy gain over state-of-the-art baselines. The codebase of LEGCF is available in https://github.com/xurong-liang/LEGCF.
Abstract:The impressive performance of large language models (LLMs) on code-related tasks has shown the potential of fully automated software development. In light of this, we introduce a new software engineering task, namely Natural Language to code Repository (NL2Repo). This task aims to generate an entire code repository from its natural language requirements. To address this task, we propose a simple yet effective framework CodeS, which decomposes NL2Repo into multiple sub-tasks by a multi-layer sketch. Specifically, CodeS includes three modules: RepoSketcher, FileSketcher, and SketchFiller. RepoSketcher first generates a repository's directory structure for given requirements; FileSketcher then generates a file sketch for each file in the generated structure; SketchFiller finally fills in the details for each function in the generated file sketch. To rigorously assess CodeS on the NL2Repo task, we carry out evaluations through both automated benchmarking and manual feedback analysis. For benchmark-based evaluation, we craft a repository-oriented benchmark, SketchEval, and design an evaluation metric, SketchBLEU. For feedback-based evaluation, we develop a VSCode plugin for CodeS and engage 30 participants in conducting empirical studies. Extensive experiments prove the effectiveness and practicality of CodeS on the NL2Repo task.