Abstract:Data scarcity and the high cost of annotation have long been persistent challenges in the field of materials science. Inspired by its potential in other fields like computer vision, we propose the MatWheel framework, which train the material property prediction model using the synthetic data generated by the conditional generative model. We explore two scenarios: fully-supervised and semi-supervised learning. Using CGCNN for property prediction and Con-CDVAE as the conditional generative model, experiments on two data-scarce material property datasets from Matminer database are conducted. Results show that synthetic data has potential in extreme data-scarce scenarios, achieving performance close to or exceeding that of real samples in all two tasks. We also find that pseudo-labels have little impact on generated data quality. Future work will integrate advanced models and optimize generation conditions to boost the effectiveness of the materials data flywheel.
Abstract:Organic photovoltaic (OPV) materials offer a promising avenue toward cost-effective solar energy utilization. However, optimizing donor-acceptor (D-A) combinations to achieve high power conversion efficiency (PCE) remains a significant challenge. In this work, we propose a framework that integrates large-scale pretraining of graph neural networks (GNNs) with a GPT-2 (Generative Pretrained Transformer 2)-based reinforcement learning (RL) strategy to design OPV molecules with potentially high PCE. This approach produces candidate molecules with predicted efficiencies approaching 21\%, although further experimental validation is required. Moreover, we conducted a preliminary fragment-level analysis to identify structural motifs recognized by the RL model that may contribute to enhanced PCE, thus providing design guidelines for the broader research community. To facilitate continued discovery, we are building the largest open-source OPV dataset to date, expected to include nearly 3,000 donor-acceptor pairs. Finally, we discuss plans to collaborate with experimental teams on synthesizing and characterizing AI-designed molecules, which will provide new data to refine and improve our predictive and generative models.
Abstract:Open Source Intelligence (OSINT) requires the integration and reasoning of diverse multimodal data, presenting significant challenges in deriving actionable insights. Traditional approaches, including multimodal large language models (MLLMs), often struggle to infer complex contextual relationships or deliver comprehensive intelligence from unstructured data sources. In this paper, we introduce COSINT-Agent, a knowledge-driven multimodal agent tailored to address the challenges of OSINT in the Chinese domain. COSINT-Agent seamlessly integrates the perceptual capabilities of fine-tuned MLLMs with the structured reasoning power of the Entity-Event-Scene Knowledge Graph (EES-KG). Central to COSINT-Agent is the innovative EES-Match framework, which bridges COSINT-MLLM and EES-KG, enabling systematic extraction, reasoning, and contextualization of multimodal insights. This integration facilitates precise entity recognition, event interpretation, and context retrieval, effectively transforming raw multimodal data into actionable intelligence. Extensive experiments validate the superior performance of COSINT-Agent across core OSINT tasks, including entity recognition, EES generation, and context matching. These results underscore its potential as a robust and scalable solution for advancing automated multimodal reasoning and enhancing the effectiveness of OSINT methodologies.
Abstract:The rapid proliferation of fake news on social media threatens social stability, creating an urgent demand for more effective detection methods. While many promising approaches have emerged, most rely on content analysis with limited semantic depth, leading to suboptimal comprehension of news content.To address this limitation, capturing broader-range semantics is essential yet challenging, as it introduces two primary types of noise: fully connecting sentences in news graphs often adds unnecessary structural noise, while highly similar but authenticity-irrelevant sentences introduce feature noise, complicating the detection process. To tackle these issues, we propose BREAK, a broad-range semantics model for fake news detection that leverages a fully connected graph to capture comprehensive semantics while employing dual denoising modules to minimize both structural and feature noise. The semantic structure denoising module balances the graph's connectivity by iteratively refining it between two bounds: a sequence-based structure as a lower bound and a fully connected graph as the upper bound. This refinement uncovers label-relevant semantic interrelations structures. Meanwhile, the semantic feature denoising module reduces noise from similar semantics by diversifying representations, aligning distinct outputs from the denoised graph and sequence encoders using KL-divergence to achieve feature diversification in high-dimensional space. The two modules are jointly optimized in a bi-level framework, enhancing the integration of denoised semantics into a comprehensive representation for detection. Extensive experiments across four datasets demonstrate that BREAK significantly outperforms existing methods in identifying fake news. Code is available at https://anonymous.4open.science/r/BREAK.
Abstract:Significant advancements have been made in semantic image synthesis in remote sensing. However, existing methods still face formidable challenges in balancing semantic controllability and diversity. In this paper, we present a Hybrid Semantic Embedding Guided Generative Adversarial Network (HySEGGAN) for controllable and efficient remote sensing image synthesis. Specifically, HySEGGAN leverages hierarchical information from a single source. Motivated by feature description, we propose a hybrid semantic Embedding method, that coordinates fine-grained local semantic layouts to characterize the geometric structure of remote sensing objects without extra information. Besides, a Semantic Refinement Network (SRN) is introduced, incorporating a novel loss function to ensure fine-grained semantic feedback. The proposed approach mitigates semantic confusion and prevents geometric pattern collapse. Experimental results indicate that the method strikes an excellent balance between semantic controllability and diversity. Furthermore, HySEGGAN significantly improves the quality of synthesized images and achieves state-of-the-art performance as a data augmentation technique across multiple datasets for downstream tasks.
Abstract:Pre-trained large language models(LLMs) have attracted increasing attention in biomedical domains due to their success in natural language processing. However, the complex traits and heterogeneity of multi-sources genomics data pose significant challenges when adapting these models to the bioinformatics and biomedical field. To address these challenges, we present GP-GPT, the first specialized large language model for genetic-phenotype knowledge representation and genomics relation analysis. Our model is fine-tuned in two stages on a comprehensive corpus composed of over 3,000,000 terms in genomics, proteomics, and medical genetics, derived from multiple large-scale validated datasets and scientific publications. GP-GPT demonstrates proficiency in accurately retrieving medical genetics information and performing common genomics analysis tasks, such as genomics information retrieval and relationship determination. Comparative experiments across domain-specific tasks reveal that GP-GPT outperforms state-of-the-art LLMs, including Llama2, Llama3 and GPT-4. These results highlight GP-GPT's potential to enhance genetic disease relation research and facilitate accurate and efficient analysis in the fields of genomics and medical genetics. Our investigation demonstrated the subtle changes of bio-factor entities' representations in the GP-GPT, which suggested the opportunities for the application of LLMs to advancing gene-phenotype research.
Abstract:Continual learning (CL) breaks off the one-way training manner and enables a model to adapt to new data, semantics and tasks continuously. However, current CL methods mainly focus on single tasks. Besides, CL models are plagued by catastrophic forgetting and semantic drift since the lack of old data, which often occurs in remote-sensing interpretation due to the intricate fine-grained semantics. In this paper, we propose Continual Panoptic Perception (CPP), a unified continual learning model that leverages multi-task joint learning covering pixel-level classification, instance-level segmentation and image-level perception for universal interpretation in remote sensing images. Concretely, we propose a collaborative cross-modal encoder (CCE) to extract the input image features, which supports pixel classification and caption generation synchronously. To inherit the knowledge from the old model without exemplar memory, we propose a task-interactive knowledge distillation (TKD) method, which leverages cross-modal optimization and task-asymmetric pseudo-labeling (TPL) to alleviate catastrophic forgetting. Furthermore, we also propose a joint optimization mechanism to achieve end-to-end multi-modal panoptic perception. Experimental results on the fine-grained panoptic perception dataset validate the effectiveness of the proposed model, and also prove that joint optimization can boost sub-task CL efficiency with over 13\% relative improvement on panoptic quality.
Abstract:Current remote-sensing interpretation models often focus on a single task such as detection, segmentation, or caption. However, the task-specific designed models are unattainable to achieve the comprehensive multi-level interpretation of images. The field also lacks support for multi-task joint interpretation datasets. In this paper, we propose Panoptic Perception, a novel task and a new fine-grained dataset (FineGrip) to achieve a more thorough and universal interpretation for RSIs. The new task, 1) integrates pixel-level, instance-level, and image-level information for universal image perception, 2) captures image information from coarse to fine granularity, achieving deeper scene understanding and description, and 3) enables various independent tasks to complement and enhance each other through multi-task learning. By emphasizing multi-task interactions and the consistency of perception results, this task enables the simultaneous processing of fine-grained foreground instance segmentation, background semantic segmentation, and global fine-grained image captioning. Concretely, the FineGrip dataset includes 2,649 remote sensing images, 12,054 fine-grained instance segmentation masks belonging to 20 foreground things categories, 7,599 background semantic masks for 5 stuff classes and 13,245 captioning sentences. Furthermore, we propose a joint optimization-based panoptic perception model. Experimental results on FineGrip demonstrate the feasibility of the panoptic perception task and the beneficial effect of multi-task joint optimization on individual tasks. The dataset will be publicly available.
Abstract:Generating accurate Structured Querying Language (SQL) is a long-standing problem, especially in matching users' semantic queries with structured databases and then generating structured SQL. Existing models typically input queries and database schemas into the LLM and rely on the LLM to perform semantic-structure matching and generate structured SQL. However, such solutions overlook the structural information within user queries and databases, which can be utilized to enhance the generation of structured SQL. This oversight can lead to inaccurate or unexecutable SQL generation. To fully exploit the structure, we propose a structure-to-SQL framework, which leverages the inherent structure information to improve the SQL generation of LLMs. Specifically, we introduce our Structure Guided SQL~(SGU-SQL) generation model. SGU-SQL first links user queries and databases in a structure-enhanced manner. It then decomposes complicated linked structures with grammar trees to guide the LLM to generate the SQL step by step. Extensive experiments on two benchmark datasets illustrate that SGU-SQL can outperform sixteen SQL generation baselines.
Abstract:Fine-grained object detection (FGOD) extends object detection with the capability of fine-grained recognition. In recent two-stage FGOD methods, the region proposal serves as a crucial link between detection and fine-grained recognition. However, current methods overlook that some proposal-related procedures inherited from general detection are not equally suitable for FGOD, limiting the multi-task learning from generation, representation, to utilization. In this paper, we present PETDet (Proposal Enhancement for Two-stage fine-grained object detection) to better handle the sub-tasks in two-stage FGOD methods. Firstly, an anchor-free Quality Oriented Proposal Network (QOPN) is proposed with dynamic label assignment and attention-based decomposition to generate high-quality oriented proposals. Additionally, we present a Bilinear Channel Fusion Network (BCFN) to extract independent and discriminative features of the proposals. Furthermore, we design a novel Adaptive Recognition Loss (ARL) which offers guidance for the R-CNN head to focus on high-quality proposals. Extensive experiments validate the effectiveness of PETDet. Quantitative analysis reveals that PETDet with ResNet50 reaches state-of-the-art performance on various FGOD datasets, including FAIR1M-v1.0 (42.96 AP), FAIR1M-v2.0 (48.81 AP), MAR20 (85.91 AP) and ShipRSImageNet (74.90 AP). The proposed method also achieves superior compatibility between accuracy and inference speed. Our code and models will be released at https://github.com/canoe-Z/PETDet.