Abstract:In the construction sector, workers often endure prolonged periods of high-intensity physical work and prolonged use of tools, resulting in injuries and illnesses primarily linked to postural ergonomic risks, a longstanding predominant health concern. To mitigate these risks, researchers have applied various technological methods to identify the ergonomic risks that construction workers face. However, traditional ergonomic risk assessment (ERA) techniques do not offer interactive feedback. The rapidly developing vision-language models (VLMs), capable of generating textual descriptions or answering questions about ergonomic risks based on image inputs, have not yet received widespread attention. This research introduces an interactive visual query system tailored to assess the postural ergonomic risks of construction workers. The system's capabilities include visual question answering (VQA), which responds to visual queries regarding workers' exposure to postural ergonomic risks, and image captioning (IC), which generates textual descriptions of these risks from images. Additionally, this study proposes a dataset designed for training and testing such methodologies. Systematic testing indicates that the VQA functionality delivers an accuracy of 96.5%. Moreover, evaluations using nine metrics for IC and assessments from human experts indicate that the proposed approach surpasses the performance of a method using the same architecture trained solely on generic datasets. This study sets a new direction for future developments in interactive ERA using generative artificial intelligence (AI) technologies.
Abstract:Large language models have exhibited significant enhancements in performance across various tasks. However, the complexity of their evaluation increases as these models generate more fluent and coherent content. Current multilingual benchmarks often use translated English versions, which may incorporate Western cultural biases that do not accurately assess other languages and cultures. To address this research gap, we introduce KULTURE Bench, an evaluation framework specifically designed for Korean culture that features datasets of cultural news, idioms, and poetry. It is designed to assess language models' cultural comprehension and reasoning capabilities at the word, sentence, and paragraph levels. Using the KULTURE Bench, we assessed the capabilities of models trained with different language corpora and analyzed the results comprehensively. The results show that there is still significant room for improvement in the models' understanding of texts related to the deeper aspects of Korean culture.
Abstract:The significant fluctuations in stock index prices in recent years highlight the critical need for accurate forecasting to guide investment and financial strategies. This study introduces a novel composite forecasting framework that integrates variational mode decomposition (VMD), PatchTST, and adaptive scale-weighted layer (ASWL) to address these challenges. Utilizing datasets of four major stock indices--SP500, DJI, SSEC, and FTSE--from 2000 to 2024, the proposed method first decomposes the raw price series into intrinsic mode functions (IMFs) using VMD. Each IMF is then modeled with PatchTST to capture temporal patterns effectively. The ASWL module is applied to incorporate scale information, enhancing prediction accuracy. The final forecast is derived by aggregating predictions from all IMFs. The VMD-PatchTST-ASWL framework demonstrates significant improvements in forecasting accuracy compared to traditional models, showing robust performance across different indices. This innovative approach provides a powerful tool for stock index price forecasting, with potential applications in various financial analysis and investment decision-making contexts.
Abstract:Network device and system health management is the foundation of modern network operations and maintenance. Traditional health management methods, relying on expert identification or simple rule-based algorithms, struggle to cope with the dynamic heterogeneous networks (DHNs) environment. Moreover, current state-of-the-art distributed anomaly detection methods, which utilize specific machine learning techniques, lack multi-scale adaptivity for heterogeneous device information, resulting in unsatisfactory diagnostic accuracy for DHNs. In this paper, we develop an LLM-assisted end-to-end intelligent network health management framework. The framework first proposes a Multi-Scale Semanticized Anomaly Detection Model (MSADM), incorporating semantic rule trees with an attention mechanism to address the multi-scale anomaly detection problem in DHNs. Secondly, a chain-of-thought-based large language model is embedded in downstream to adaptively analyze the fault detection results and produce an analysis report with detailed fault information and optimization strategies. Experimental results show that the accuracy of our proposed MSADM for heterogeneous network entity anomaly detection is as high as 91.31\%.
Abstract:This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models (LLMs) in scientific domains. A benchmark dataset is curated to encapsulate the intricate physical-chemical properties of small molecules, their drugability for pharmacology, alongside the functional attributes of enzymes and crystal materials, underscoring the relevance and applicability across biological and chemical domains.The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics, including capability, accuracy, F1 score, and hallucination drop. The effectiveness of the method is demonstrated through case studies on complex materials including the MacMillan catalyst, paclitaxel, and lithium cobalt oxide. The results suggest that domain-knowledge prompts can guide LLMs to generate more accurate and relevant responses, highlighting the potential of LLMs as powerful tools for scientific discovery and innovation when equipped with domain-specific prompts. The study also discusses limitations and future directions for domain-specific prompt engineering development.
Abstract:In the pursuit of novel catalyst development to address pressing environmental concerns and energy demand, conventional design and optimization methods often fall short due to the complexity and vastness of the catalyst parameter space. The advent of Machine Learning (ML) has ushered in a new era in the field of catalyst optimization, offering potential solutions to the shortcomings of traditional techniques. However, existing methods fail to effectively harness the wealth of information contained within the burgeoning body of scientific literature on catalyst synthesis. To address this gap, this study proposes an innovative Artificial Intelligence (AI) workflow that integrates Large Language Models (LLMs), Bayesian optimization, and an active learning loop to expedite and enhance catalyst optimization. Our methodology combines advanced language understanding with robust optimization strategies, effectively translating knowledge extracted from diverse literature into actionable parameters for practical experimentation and optimization. In this article, we demonstrate the application of this AI workflow in the optimization of catalyst synthesis for ammonia production. The results underscore the workflow's ability to streamline the catalyst development process, offering a swift, resource-efficient, and high-precision alternative to conventional methods.
Abstract:This paper proposes a special-purpose system to achieve high-accuracy and high-efficiency machine learning (ML) molecular dynamics (MD) calculations. The system consists of field programmable gate array (FPGA) and application specific integrated circuit (ASIC) working in heterogeneous parallelization. To be specific, a multiplication-less neural network (NN) is deployed on the non-von Neumann (NvN)-based ASIC (SilTerra 180 nm process) to evaluate atomic forces, which is the most computationally expensive part of MD. All other calculations of MD are done using FPGA (Xilinx XC7Z100). It is shown that, to achieve similar-level accuracy, the proposed NvN-based system based on low-end fabrication technologies (180 nm) is 1.6x faster and 10^2-10^3x more energy efficiency than state-of-the-art vN based MLMD using graphics processing units (GPUs) based on much more advanced technologies (12 nm), indicating superiority of the proposed NvN-based heterogeneous parallel architecture.
Abstract:Precise control over dimension of nanocrystals is critical to tune the properties for various applications. However, the traditional control through experimental optimization is slow, tedious and time consuming. Herein a robust deep neural network-based regression algorithm has been developed for precise prediction of length, width, and aspect ratios of semiconductor nanorods (NRs). Given there is limited experimental data available (28 samples), a Synthetic Minority Oversampling Technique for regression (SMOTE-REG) has been employed for the first time for data generation. Deep neural network is further applied to develop regression model which demonstrated the well performed prediction on both the original and generated data with a similar distribution. The prediction model is further validated with additional experimental data, showing accurate prediction results. Additionally, Local Interpretable Model-Agnostic Explanations (LIME) is used to interpret the weight for each variable, which corresponds to its importance towards the target dimension, which is approved to be well correlated well with experimental observations.