Abstract:Metal-organic frameworks (MOFs) are porous crystalline materials with broad applications such as carbon capture and drug delivery, yet accurately predicting their 3D structures remains a significant challenge. While Large Language Models (LLMs) have shown promise in generating crystals, their application to MOFs is hindered by MOFs' high atomic complexity. Inspired by the success of block-wise paradigms in deep generative models, we pioneer the use of LLMs in this domain by introducing MOF-LLM, the first LLM framework specifically adapted for block-level MOF structure prediction. To effectively harness LLMs for this modular assembly task, our training paradigm integrates spatial-aware continual pre-training (CPT), structural supervised fine-tuning (SFT), and matching-driven reinforcement learning (RL). By incorporating explicit spatial priors and optimizing structural stability via Soft Adaptive Policy Optimization (SAPO), our approach substantially enhances the spatial reasoning capability of a Qwen-3 8B model for accurate MOF structure prediction. Comprehensive experiments demonstrate that MOF-LLM outperforms state-of-the-art denoising-based and LLM-based methods while exhibiting superior sampling efficiency.




Abstract:Deep learning methods for material property prediction have been widely explored to advance materials discovery. However, the prevailing pre-train then fine-tune paradigm often fails to address the inherent diversity and disparity of material tasks. To overcome these challenges, we introduce MoMa, a Modular framework for Materials that first trains specialized modules across a wide range of tasks and then adaptively composes synergistic modules tailored to each downstream scenario. Evaluation across 17 datasets demonstrates the superiority of MoMa, with a substantial 14% average improvement over the strongest baseline. Few-shot and continual learning experiments further highlight MoMa's potential for real-world applications. Pioneering a new paradigm of modular material learning, MoMa will be open-sourced to foster broader community collaboration.