Abstract:Uplift modeling, vital in online marketing, seeks to accurately measure the impact of various strategies, such as coupons or discounts, on different users by predicting the Individual Treatment Effect (ITE). In an e-commerce setting, user behavior follows a defined sequential chain, including impression, click, and conversion. Marketing strategies exert varied uplift effects at each stage within this chain, impacting metrics like click-through and conversion rate. Despite its utility, existing research has neglected to consider the inter-task across all stages impacts within a specific treatment and has insufficiently utilized the treatment information, potentially introducing substantial bias into subsequent marketing decisions. We identify these two issues as the chain-bias problem and the treatment-unadaptive problem. This paper introduces the Entire Chain UPlift method with context-enhanced learning (ECUP), devised to tackle these issues. ECUP consists of two primary components: 1) the Entire Chain-Enhanced Network, which utilizes user behavior patterns to estimate ITE throughout the entire chain space, models the various impacts of treatments on each task, and integrates task prior information to enhance context awareness across all stages, capturing the impact of treatment on different tasks, and 2) the Treatment-Enhanced Network, which facilitates fine-grained treatment modeling through bit-level feature interactions, thereby enabling adaptive feature adjustment. Extensive experiments on public and industrial datasets validate ECUPs effectiveness. Moreover, ECUP has been deployed on the Meituan food delivery platform, serving millions of daily active users, with the related dataset released for future research.
Abstract:The wide dissemination of fake news has affected our lives in many aspects, making fake news detection important and attracting increasing attention. Existing approaches make substantial contributions in this field by modeling news from a single-modal or multi-modal perspective. However, these modal-based methods can result in sub-optimal outcomes as they ignore reader behaviors in news consumption and authenticity verification. For instance, they haven't taken into consideration the component-by-component reading process: from the headline, images, comments, to the body, which is essential for modeling news with more granularity. To this end, we propose an approach of Emulating the behaviors of readers (Ember) for fake news detection on social media, incorporating readers' reading and verificating process to model news from the component perspective thoroughly. Specifically, we first construct intra-component feature extractors to emulate the behaviors of semantic analyzing on each component. Then, we design a module that comprises inter-component feature extractors and a sequence-based aggregator. This module mimics the process of verifying the correlation between components and the overall reading and verification sequence. Thus, Ember can handle the news with various components by emulating corresponding sequences. We conduct extensive experiments on nine real-world datasets, and the results demonstrate the superiority of Ember.