Abstract:Research on loss surface geometry, such as Sharpness-Aware Minimization (SAM), shows that flatter minima improve generalization. Recent studies further reveal that flatter minima can also reduce the domain generalization (DG) gap. However, existing flatness-based DG techniques predominantly operate within a full-precision training process, which is impractical for deployment on resource-constrained edge devices that typically rely on lower bit-width representations (e.g., 4 bits, 3 bits). Consequently, low-precision quantization-aware training is critical for optimizing these techniques in real-world applications. In this paper, we observe a significant degradation in performance when applying state-of-the-art DG-SAM methods to quantized models, suggesting that current approaches fail to preserve generalizability during the low-precision training process. To address this limitation, we propose a novel Gradient-Adaptive Quantization-Aware Training (GAQAT) framework for DG. Our approach begins by identifying the scale-gradient conflict problem in low-precision quantization, where the task loss and smoothness loss induce conflicting gradients for the scaling factors of quantizers, with certain layers exhibiting opposing gradient directions. This conflict renders the optimization of quantized weights highly unstable. To mitigate this, we further introduce a mechanism to quantify gradient inconsistencies and selectively freeze the gradients of scaling factors, thereby stabilizing the training process and enhancing out-of-domain generalization. Extensive experiments validate the effectiveness of the proposed GAQAT framework. On PACS, our 3-bit and 4-bit models outperform direct DG-QAT integration by up to 4.5%. On DomainNet, the 4-bit model achieves near-lossless performance compared to full precision, with improvements of 1.39% (4-bit) and 1.06% (3-bit) over the SOTA QAT baseline.
Abstract:Adaptive causal representation learning from observational data is presented, integrated with an efficient sample splitting technique within the semiparametric estimating equation framework. The support points sample splitting (SPSS), a subsampling method based on energy distance, is employed for efficient double machine learning (DML) in causal inference. The support points are selected and split as optimal representative points of the full raw data in a random sample, in contrast to the traditional random splitting, and providing an optimal sub-representation of the underlying data generating distribution. They offer the best representation of a full big dataset, whereas the unit structural information of the underlying distribution via the traditional random data splitting is most likely not preserved. Three machine learning estimators were adopted for causal inference, support vector machine (SVM), deep learning (DL), and a hybrid super learner (SL) with deep learning (SDL), using SPSS. A comparative study is conducted between the proposed SVM, DL, and SDL representations using SPSS, and the benchmark results from Chernozhukov et al. (2018), which employed random forest, neural network, and regression trees with a random k-fold cross-fitting technique on the 401(k)-pension plan real data. The simulations show that DL with SPSS and the hybrid methods of DL and SL with SPSS outperform SVM with SPSS in terms of computational efficiency and the estimation quality, respectively.
Abstract:Constructing high-quality Supervised Fine-Tuning (SFT) datasets is critical for the training of large language models (LLMs). Recent studies have shown that using data from a specific source, Ruozhiba, a Chinese website where users ask "silly" questions to better understand certain topics, can lead to better fine-tuning performance. This paper aims to explore some hidden factors: the potential interpretations of its success and a large-scale evaluation of the performance. First, we leverage GPT-4 to analyze the successful cases of Ruozhiba questions from the perspective of education, psychology, and cognitive science, deriving a set of explanatory rules. Then, we construct fine-tuning datasets by applying these rules to the MMLU training set. Surprisingly, our results indicate that rules can significantly improve model performance in certain tasks, while potentially diminishing performance on others. For example, SFT data generated following the "Counterintuitive Thinking" rule can achieve approximately a 5% improvement on the "Global Facts" task, whereas the "Blurring the Conceptual Boundaries" rule leads to a performance drop of 6.14% on the "Econometrics" task. In addition, for specific tasks, different rules tend to have a consistent impact on model performance. This suggests that the differences between the extracted rules are not as significant, and the effectiveness of the rules is relatively consistent across tasks. Our research highlights the importance of considering task diversity and rule applicability when constructing SFT datasets to achieve more comprehensive performance improvements.
Abstract:Federated learning (FL) is a machine learning paradigm that allows multiple FL participants (FL-PTs) to collaborate on training models without sharing private data. Due to data heterogeneity, negative transfer may occur in the FL training process. This necessitates FL-PT selection based on their data complementarity. In cross-silo FL, organizations that engage in business activities are key sources of FL-PTs. The resulting FL ecosystem has two features: (i) self-interest, and (ii) competition among FL-PTs. This requires the desirable FL-PT selection strategy to simultaneously mitigate the problems of free riders and conflicts of interest among competitors. To this end, we propose an optimal FL collaboration formation strategy -- FedEgoists -- which ensures that: (1) a FL-PT can benefit from FL if and only if it benefits the FL ecosystem, and (2) a FL-PT will not contribute to its competitors or their supporters. It provides an efficient clustering solution to group FL-PTs into coalitions, ensuring that within each coalition, FL-PTs share the same interest. We theoretically prove that the FL-PT coalitions formed are optimal since no coalitions can collaborate together to improve the utility of any of their members. Extensive experiments on widely adopted benchmark datasets demonstrate the effectiveness of FedEgoists compared to nine state-of-the-art baseline methods, and its ability to establish efficient collaborative networks in cross-silos FL with FL-PTs that engage in business activities.
Abstract:Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks. However, the enormous size of LLMs poses significant challenges in terms of computational complexity and resource requirements. Low-Rank Adaptation (LoRA) has emerged as a promising solution. However, there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum. In this work, we propose eXtreme Gradient Boosting LoRA (XGBLoRA), a novel framework that bridges this gap by leveraging the power of ensemble learning. Inspired by gradient boosting, XGBLoRA iteratively learns and merges a sequence of LoRA adaptations to refine model predictions. It achieves better performance than the standard LoRA, while enjoying the computational efficiency of rank-1 adaptations. We provide theoretical analysis to show the convergence and optimality of our approach, and conduct extensive experiments on a range of natural language processing tasks. The results demonstrate that XGBLoRA consistently outperforms standard LoRA and achieves performance comparable to full fine-tuning with significantly fewer trainable parameters. This work advances parameter-efficient fine-tuning for LLMs, and offers a promising solution for adapting LLMs to downstream tasks while optimizing performance and efficiency.
Abstract:There is growing research interest in measuring the statistical heterogeneity of clients' local datasets. Such measurements are used to estimate the suitability for collaborative training of personalized federated learning (PFL) models. Currently, these research endeavors are taking place in silos and there is a lack of a unified benchmark to provide a fair and convenient comparison among various approaches in common settings. We aim to bridge this important gap in this paper. The proposed benchmarking framework currently includes six representative approaches. Extensive experiments have been conducted to compare these approaches under five standard non-IID FL settings, providing much needed insights into which approaches are advantageous under which settings. The proposed framework offers useful guidance on the suitability of various data divergence measures in FL systems. It is beneficial for keeping related research activities on the right track in terms of: (1) designing PFL schemes, (2) selecting appropriate data heterogeneity evaluation approaches for specific FL application scenarios, and (3) addressing fairness issues in collaborative model training. The code is available at https://github.com/Xiaoni-61/DH-Benchmark.
Abstract:For privacy-preserving graph learning tasks involving distributed graph datasets, federated learning (FL)-based GCN (FedGCN) training is required. A key challenge for FedGCN is scaling to large-scale graphs, which typically incurs high computation and communication costs when dealing with the explosively increasing number of neighbors. Existing graph sampling-enhanced FedGCN training approaches ignore graph structural information or dynamics of optimization, resulting in high variance and inaccurate node embeddings. To address this limitation, we propose the Federated Adaptive Importance-based Sampling (FedAIS) approach. It achieves substantial computational cost saving by focusing the limited resources on training important nodes, while reducing communication overhead via adaptive historical embedding synchronization. The proposed adaptive importance-based sampling method jointly considers the graph structural heterogeneity and the optimization dynamics to achieve optimal trade-off between efficiency and accuracy. Extensive evaluations against five state-of-the-art baselines on five real-world graph datasets show that FedAIS achieves comparable or up to 3.23% higher test accuracy, while saving communication and computation costs by 91.77% and 85.59%.
Abstract:The Space-Air-Ground Integrated Network (SAGIN), crucial to the advancement of sixth-generation (6G) technology, plays a key role in ensuring universal connectivity, particularly by addressing the communication needs of remote areas lacking cellular network infrastructure. This paper delves into the role of unmanned aerial vehicles (UAVs) within SAGIN, where they act as a control layer owing to their adaptable deployment capabilities and their intermediary role. Equipped with millimeter-wave (mmWave) radar and vision sensors, these UAVs are capable of acquiring multi-source data, which helps to diminish uncertainty and enhance the accuracy of decision-making. Concurrently, UAVs collect tasks requiring computing resources from their coverage areas, originating from a variety of mobile devices moving at different speeds. These tasks are then allocated to ground base stations (BSs), low-earth-orbit (LEO) satellite, and local processing units to improve processing efficiency. Amidst this framework, our study concentrates on devising dynamic strategies for facilitating task hosting between mobile devices and UAVs, offloading computations, managing associations between UAVs and BSs, and allocating computing resources. The objective is to minimize the time-averaged network cost, considering the uncertainty of device locations, speeds, and even types. To tackle these complexities, we propose a deep reinforcement learning and perception-aided online approach (DRL-and-Perception-aided Approach) for this joint optimization in SAGIN, tailored for an environment filled with uncertainties. The effectiveness of our proposed approach is validated through extensive numerical simulations, which quantify its performance relative to various network parameters.
Abstract:This paper investigates radar-assisted user acquisition for downlink multi-user multiple-input multiple-output (MIMO) transmission using Orthogonal Frequency Division Multiplexing (OFDM) signals. Specifically, we formulate a concise mathematical model for the user acquisition problem, where each user is characterized by its delay and beamspace response. Therefore, we propose a two-stage method for user acquisition, where the Multiple Signal Classification (MUSIC) algorithm is adopted for delay estimation, and then a least absolute shrinkage and selection operator (LASSO) is applied for estimating the user response in the beamspace. Furthermore, we also provide a comprehensive performance analysis of the considered problem based on the pair-wise error probability (PEP). Particularly, we show that the rank and the geometric mean of non-zero eigenvalues of the squared beamspace difference matrix determines the user acquisition performance. More importantly, we reveal that simultaneously probing multiple beams outperforms concentrating power on a specific beam direction in each time slot under the power constraint, when only limited OFDM symbols are transmitted. Our numerical results confirm our conclusions and also demonstrate a promising acquisition performance of the proposed two-stage method.
Abstract:Model heterogeneous federated learning (MHeteroFL) enables FL clients to collaboratively train models with heterogeneous structures in a distributed fashion. However, existing MHeteroFL methods rely on training loss to transfer knowledge between the client model and the server model, resulting in limited knowledge exchange. To address this limitation, we propose the Federated model heterogeneous Matryoshka Representation Learning (FedMRL) approach for supervised learning tasks. It adds an auxiliary small homogeneous model shared by clients with heterogeneous local models. (1) The generalized and personalized representations extracted by the two models' feature extractors are fused by a personalized lightweight representation projector. This step enables representation fusion to adapt to local data distribution. (2) The fused representation is then used to construct Matryoshka representations with multi-dimensional and multi-granular embedded representations learned by the global homogeneous model header and the local heterogeneous model header. This step facilitates multi-perspective representation learning and improves model learning capability. Theoretical analysis shows that FedMRL achieves a $O(1/T)$ non-convex convergence rate. Extensive experiments on benchmark datasets demonstrate its superior model accuracy with low communication and computational costs compared to seven state-of-the-art baselines. It achieves up to 8.48% and 24.94% accuracy improvement compared with the state-of-the-art and the best same-category baseline, respectively.