Abstract:Despite the remarkable advance of large language models (LLMs), the prevalence of non-factual responses remains a common issue. This work studies non-factuality prediction (NFP), which predicts whether an LLM will generate non-factual responses to a question before the generation process. Previous efforts on NFP usually rely on extensive computation. In this work, we conduct extensive analysis to explore the capabilities of using a lightweight probe to elicit ``whether an LLM knows'' from the hidden representations of questions. Additionally, we discover that the non-factuality probe employs similar patterns for NFP across multiple LLMs. Motivated by the intriguing finding, we conduct effective transfer learning for cross-LLM NFP and propose a question-aligned strategy to ensure the efficacy of mini-batch based training.
Abstract:Machine learning algorithms minimizing average risk are susceptible to distributional shifts. Distributionally Robust Optimization (DRO) addresses this issue by optimizing the worst-case risk within an uncertainty set. However, DRO suffers from over-pessimism, leading to low-confidence predictions, poor parameter estimations as well as poor generalization. In this work, we conduct a theoretical analysis of a probable root cause of over-pessimism: excessive focus on noisy samples. To alleviate the impact of noise, we incorporate data geometry into calibration terms in DRO, resulting in our novel Geometry-Calibrated DRO (GCDRO) for regression. We establish the connection between our risk objective and the Helmholtz free energy in statistical physics, and this free-energy-based risk can extend to standard DRO methods. Leveraging gradient flow in Wasserstein space, we develop an approximate minimax optimization algorithm with a bounded error ratio and elucidate how our approach mitigates noisy sample effects. Comprehensive experiments confirm GCDRO's superiority over conventional DRO methods.
Abstract:In computer vision, different basic blocks are created around different matrix operations, and models based on different basic blocks have achieved good results. Good results achieved in vision tasks grants them rationality. However, these experimental-based models also make deep learning long criticized for principle and interpretability. Deep learning originated from the concept of neurons in neuroscience, but recent designs detached natural neural networks except for some simple concepts. In this paper, we build an artificial neural network, CVSNet, which can be seen as a computer implementation for central visual system of the brain. Each block in CVSNet represents the same vision information as that in brains. In CVSNet, blocks differs from each other and visual information flows through three independent pathways and five different blocks. Thus CVSNet is completely different from the design of all previous models, in which basic blocks are repeated to build model and information between channels is mixed at the outset. In ablation experiment, we show the information extracted by blocks in CVSNet and compare with previous networks, proving effectiveness and rationality of blocks in CVSNet from experiment side. And in the experiment of object recognition, CVSNet achieves comparable results to ConvNets, Vision Transformers and MLPs.
Abstract:This survey paper provides a comprehensive review of the use of diffusion models in natural language processing (NLP). Diffusion models are a class of mathematical models that aim to capture the diffusion of information or signals across a network or manifold. In NLP, diffusion models have been used in a variety of applications, such as natural language generation, sentiment analysis, topic modeling, and machine translation. This paper discusses the different formulations of diffusion models used in NLP, their strengths and limitations, and their applications. We also perform a thorough comparison between diffusion models and alternative generative models, specifically highlighting the autoregressive (AR) models, while also examining how diverse architectures incorporate the Transformer in conjunction with diffusion models. Compared to AR models, diffusion models have significant advantages for parallel generation, text interpolation, token-level controls such as syntactic structures and semantic contents, and robustness. Exploring further permutations of integrating Transformers into diffusion models would be a valuable pursuit. Also, the development of multimodal diffusion models and large-scale diffusion language models with notable capabilities for few-shot learning would be important directions for the future advance of diffusion models in NLP.
Abstract:Massive amounts of data are the foundation of data-driven recommendation models. As an inherent nature of big data, data heterogeneity widely exists in real-world recommendation systems. It reflects the differences in the properties among sub-populations. Ignoring the heterogeneity in recommendation data could limit the performance of recommendation models, hurt the sub-populational robustness, and make the models misled by biases. However, data heterogeneity has not attracted substantial attention in the recommendation community. Therefore, it inspires us to adequately explore and exploit heterogeneity for solving the above problems and assisting data analysis. In this work, we focus on exploring two representative categories of heterogeneity in recommendation data that is the heterogeneity of prediction mechanism and covariate distribution and propose an algorithm that explores the heterogeneity through a bilevel clustering method. Furthermore, the uncovered heterogeneity is exploited for two purposes in recommendation scenarios which are prediction with multiple sub-models and supporting debias. Extensive experiments on real-world data validate the existence of heterogeneity in recommendation data and the effectiveness of exploring and exploiting data heterogeneity in recommendation.
Abstract:Recently, flat minima are proven to be effective for improving generalization and sharpness-aware minimization (SAM) achieves state-of-the-art performance. Yet the current definition of flatness discussed in SAM and its follow-ups are limited to the zeroth-order flatness (i.e., the worst-case loss within a perturbation radius). We show that the zeroth-order flatness can be insufficient to discriminate minima with low generalization error from those with high generalization error both when there is a single minimum or multiple minima within the given perturbation radius. Thus we present first-order flatness, a stronger measure of flatness focusing on the maximal gradient norm within a perturbation radius which bounds both the maximal eigenvalue of Hessian at local minima and the regularization function of SAM. We also present a novel training procedure named Gradient norm Aware Minimization (GAM) to seek minima with uniformly small curvature across all directions. Experimental results show that GAM improves the generalization of models trained with current optimizers such as SGD and AdamW on various datasets and networks. Furthermore, we show that GAM can help SAM find flatter minima and achieve better generalization.
Abstract:Question Answering (QA) systems require a large amount of annotated data which is costly and time-consuming to gather. Converting datasets of existing QA benchmarks are challenging due to different formats and complexities. To address these issues, we propose an algorithm to automatically generate shorter questions resembling day-to-day human communication in the Natural Questions (NQ) dataset from longer trivia questions in Quizbowl (QB) dataset by leveraging conversion in style among the datasets. This provides an automated way to generate more data for our QA systems. To ensure quality as well as quantity of data, we detect and remove ill-formed questions using a neural classifier. We demonstrate that in a low resource setting, using the generated data improves the QA performance over the baseline system on both NQ and QB data. Our algorithm improves the scalability of training data while maintaining quality of data for QA systems.
Abstract:In spite of the tremendous development of recommender system owing to the progressive capability of machine learning recently, the current recommender system is still vulnerable to the distribution shift of users and items in realistic scenarios, leading to the sharp decline of performance in testing environments. It is even more severe in many common applications where only the implicit feedback from sparse data is available. Hence, it is crucial to promote the performance stability of recommendation method in different environments. In this work, we first make a thorough analysis of implicit recommendation problem from the viewpoint of out-of-distribution (OOD) generalization. Then under the guidance of our theoretical analysis, we propose to incorporate the recommendation-specific DAG learner into a novel causal preference-based recommendation framework named CausPref, mainly consisting of causal learning of invariant user preference and anti-preference negative sampling to deal with implicit feedback. Extensive experimental results from real-world datasets clearly demonstrate that our approach surpasses the benchmark models significantly under types of out-of-distribution settings, and show its impressive interpretability.
Abstract:Outdoor scene completion is a challenging issue in 3D scene understanding, which plays an important role in intelligent robotics and autonomous driving. Due to the sparsity of LiDAR acquisition, it is far more complex for 3D scene completion and semantic segmentation. Since semantic features can provide constraints and semantic priors for completion tasks, the relationship between them is worth exploring. Therefore, we propose an end-to-end semantic segmentation-assisted scene completion network, including a 2D completion branch and a 3D semantic segmentation branch. Specifically, the network takes a raw point cloud as input, and merges the features from the segmentation branch into the completion branch hierarchically to provide semantic information. By adopting BEV representation and 3D sparse convolution, we can benefit from the lower operand while maintaining effective expression. Besides, the decoder of the segmentation branch is used as an auxiliary, which can be discarded in the inference stage to save computational consumption. Extensive experiments demonstrate that our method achieves competitive performance on SemanticKITTI dataset with low latency. Code and models will be released at https://github.com/jokester-zzz/SSA-SC.
Abstract:This paper presents F-Siamese Tracker, a novel approach for single object tracking prominently characterized by more robustly integrating 2D and 3D information to reduce redundant search space. A main challenge in 3D single object tracking is how to reduce search space for generating appropriate 3D candidates. Instead of solely relying on 3D proposals, firstly, our method leverages the Siamese network applied on RGB images to produce 2D region proposals which are then extruded into 3D viewing frustums. Besides, we perform an online accuracy validation on the 3D frustum to generate refined point cloud searching space, which can be embedded directly into the existing 3D tracking backbone. For efficiency, our approach gains better performance with fewer candidates by reducing search space. In addition, benefited from introducing the online accuracy validation, for occasional cases with strong occlusions or very sparse points, our approach can still achieve high precision, even when the 2D Siamese tracker loses the target. This approach allows us to set a new state-of-the-art in 3D single object tracking by a significant margin on a sparse outdoor dataset (KITTI tracking). Moreover, experiments on 2D single object tracking show that our framework boosts 2D tracking performance as well.