Abstract:For tabular datasets, the change in the relationship between the label and covariates ($Y|X$-shifts) is common due to missing variables (a.k.a. confounders). Since it is impossible to generalize to a completely new and unknown domain, we study models that are easy to adapt to the target domain even with few labeled examples. We focus on building more informative representations of tabular data that can mitigate $Y|X$-shifts, and propose to leverage the prior world knowledge in LLMs by serializing (write down) the tabular data to encode it. We find LLM embeddings alone provide inconsistent improvements in robustness, but models trained on them can be well adapted/finetuned to the target domain even using 32 labeled observations. Our finding is based on a comprehensive and systematic study consisting of 7650 source-target pairs and benchmark against 261,000 model configurations trained by 22 algorithms. Our observation holds when ablating the size of accessible target data and different adaptation strategies. The code is available at https://github.com/namkoong-lab/LLM-Tabular-Shifts.
Abstract:Graph Neural Networks (GNNs) are widely used for node classification tasks but often fail to generalize when training and test nodes come from different distributions, limiting their practicality. To overcome this, recent approaches adopt invariant learning techniques from the out-of-distribution (OOD) generalization field, which seek to establish stable prediction methods across environments. However, the applicability of these invariant assumptions to graph data remains unverified, and such methods often lack solid theoretical support. In this work, we introduce the Topology-Aware Dynamic Reweighting (TAR) framework, which dynamically adjusts sample weights through gradient flow in the geometric Wasserstein space during training. Instead of relying on strict invariance assumptions, we prove that our method is able to provide distributional robustness, thereby enhancing the out-of-distribution generalization performance on graph data. By leveraging the inherent graph structure, TAR effectively addresses distribution shifts. Our framework's superiority is demonstrated through standard testing on four graph OOD datasets and three class-imbalanced node classification datasets, exhibiting marked improvements over existing methods.
Abstract:We establish a new model-agnostic optimization framework for out-of-distribution generalization via multicalibration, a criterion that ensures a predictor is calibrated across a family of overlapping groups. Multicalibration is shown to be associated with robustness of statistical inference under covariate shift. We further establish a link between multicalibration and robustness for prediction tasks both under and beyond covariate shift. We accomplish this by extending multicalibration to incorporate grouping functions that consider covariates and labels jointly. This leads to an equivalence of the extended multicalibration and invariance, an objective for robust learning in existence of concept shift. We show a linear structure of the grouping function class spanned by density ratios, resulting in a unifying framework for robust learning by designing specific grouping functions. We propose MC-Pseudolabel, a post-processing algorithm to achieve both extended multicalibration and out-of-distribution generalization. The algorithm, with lightweight hyperparameters and optimization through a series of supervised regression steps, achieves superior performance on real-world datasets with distribution shift.
Abstract:The performance of learning models often deteriorates when deployed in out-of-sample environments. To ensure reliable deployment, we propose a stability evaluation criterion based on distributional perturbations. Conceptually, our stability evaluation criterion is defined as the minimal perturbation required on our observed dataset to induce a prescribed deterioration in risk evaluation. In this paper, we utilize the optimal transport (OT) discrepancy with moment constraints on the \textit{(sample, density)} space to quantify this perturbation. Therefore, our stability evaluation criterion can address both \emph{data corruptions} and \emph{sub-population shifts} -- the two most common types of distribution shifts in real-world scenarios. To further realize practical benefits, we present a series of tractable convex formulations and computational methods tailored to different classes of loss functions. The key technical tool to achieve this is the strong duality theorem provided in this paper. Empirically, we validate the practical utility of our stability evaluation criterion across a host of real-world applications. These empirical studies showcase the criterion's ability not only to compare the stability of different learning models and features but also to provide valuable guidelines and strategies to further improve models.
Abstract:Facial Attribute Classification (FAC) holds substantial promise in widespread applications. However, FAC models trained by traditional methodologies can be unfair by exhibiting accuracy inconsistencies across varied data subpopulations. This unfairness is largely attributed to bias in data, where some spurious attributes (e.g., Male) statistically correlate with the target attribute (e.g., Smiling). Most of existing fairness-aware methods rely on the labels of spurious attributes, which may be unavailable in practice. This work proposes a novel, generation-based two-stage framework to train a fair FAC model on biased data without additional annotation. Initially, we identify the potential spurious attributes based on generative models. Notably, it enhances interpretability by explicitly showing the spurious attributes in image space. Following this, for each image, we first edit the spurious attributes with a random degree sampled from a uniform distribution, while keeping target attribute unchanged. Then we train a fair FAC model by fostering model invariance to these augmentation. Extensive experiments on three common datasets demonstrate the effectiveness of our method in promoting fairness in FAC without compromising accuracy. Codes are in https://github.com/heqianpei/DiGA.
Abstract:Generalizing to out-of-distribution (OOD) data or unseen domain, termed OOD generalization, still lacks appropriate theoretical guarantees. Canonical OOD bounds focus on different distance measurements between source and target domains but fail to consider the optimization property of the learned model. As empirically shown in recent work, the sharpness of learned minima influences OOD generalization. To bridge this gap between optimization and OOD generalization, we study the effect of sharpness on how a model tolerates data change in domain shift which is usually captured by "robustness" in generalization. In this paper, we give a rigorous connection between sharpness and robustness, which gives better OOD guarantees for robust algorithms. It also provides a theoretical backing for "flat minima leads to better OOD generalization". Overall, we propose a sharpness-based OOD generalization bound by taking robustness into consideration, resulting in a tighter bound than non-robust guarantees. Our findings are supported by the experiments on a ridge regression model, as well as the experiments on deep learning classification tasks.
Abstract:Machine learning models, while progressively advanced, rely heavily on the IID assumption, which is often unfulfilled in practice due to inevitable distribution shifts. This renders them susceptible and untrustworthy for deployment in risk-sensitive applications. Such a significant problem has consequently spawned various branches of works dedicated to developing algorithms capable of Out-of-Distribution (OOD) generalization. Despite these efforts, much less attention has been paid to the evaluation of OOD generalization, which is also a complex and fundamental problem. Its goal is not only to assess whether a model's OOD generalization capability is strong or not, but also to evaluate where a model generalizes well or poorly. This entails characterizing the types of distribution shifts that a model can effectively address, and identifying the safe and risky input regions given a model. This paper serves as the first effort to conduct a comprehensive review of OOD evaluation. We categorize existing research into three paradigms: OOD performance testing, OOD performance prediction, and OOD intrinsic property characterization, according to the availability of test data. Additionally, we briefly discuss OOD evaluation in the context of pretrained models. In closing, we propose several promising directions for future research in OOD evaluation.
Abstract:Machine learning algorithms minimizing average risk are susceptible to distributional shifts. Distributionally Robust Optimization (DRO) addresses this issue by optimizing the worst-case risk within an uncertainty set. However, DRO suffers from over-pessimism, leading to low-confidence predictions, poor parameter estimations as well as poor generalization. In this work, we conduct a theoretical analysis of a probable root cause of over-pessimism: excessive focus on noisy samples. To alleviate the impact of noise, we incorporate data geometry into calibration terms in DRO, resulting in our novel Geometry-Calibrated DRO (GCDRO) for regression. We establish the connection between our risk objective and the Helmholtz free energy in statistical physics, and this free-energy-based risk can extend to standard DRO methods. Leveraging gradient flow in Wasserstein space, we develop an approximate minimax optimization algorithm with a bounded error ratio and elucidate how our approach mitigates noisy sample effects. Comprehensive experiments confirm GCDRO's superiority over conventional DRO methods.
Abstract:Different distribution shifts require different algorithmic and operational interventions. Methodological research must be grounded by the specific shifts they address. Although nascent benchmarks provide a promising empirical foundation, they implicitly focus on covariate shifts, and the validity of empirical findings depends on the type of shift, e.g., previous observations on algorithmic performance can fail to be valid when the $Y|X$ distribution changes. We conduct a thorough investigation of natural shifts in 5 tabular datasets over 86,000 model configurations, and find that $Y|X$-shifts are most prevalent. To encourage researchers to develop a refined language for distribution shifts, we build WhyShift, an empirical testbed of curated real-world shifts where we characterize the type of shift we benchmark performance over. Since $Y|X$-shifts are prevalent in tabular settings, we identify covariate regions that suffer the biggest $Y|X$-shifts and discuss implications for algorithmic and data-based interventions. Our testbed highlights the importance of future research that builds an understanding of how distributions differ.
Abstract:Large-scale vision-language (V-L) models have demonstrated remarkable generalization capabilities for downstream tasks through prompt tuning. However, their performance suffers significantly in the presence of class imbalance, a common issue in real-world scenarios. In this paper, we investigate the effects of class imbalance on the generalization performance of V-L models and extend Neural Collapse phenomenon to these models, revealing the geometric reasons behind the impact of class imbalance on their generalization ability. To address this problem, we propose Neural Collapse based Prompt Tuning (NPT), a novel method that optimizes prompts so that both text and image features satisfy the same simplex ETF structure. NPT incorporates two regularization terms, geometric de-biasing and multi-modal isomorphism, to enhance the robustness of V-L models under class imbalance conditions while maintaining their generalization capabilities. Our comprehensive experiments show that NPT outperforms existing prompt learning techniques across 11 diverse image recognition datasets, achieving an absolute average gain of 2.63\% for novel classes and 2.47\% for harmonic mean when facing imbalanced data.