Abstract:Graph Neural Networks (GNNs) are widely used for node classification tasks but often fail to generalize when training and test nodes come from different distributions, limiting their practicality. To overcome this, recent approaches adopt invariant learning techniques from the out-of-distribution (OOD) generalization field, which seek to establish stable prediction methods across environments. However, the applicability of these invariant assumptions to graph data remains unverified, and such methods often lack solid theoretical support. In this work, we introduce the Topology-Aware Dynamic Reweighting (TAR) framework, which dynamically adjusts sample weights through gradient flow in the geometric Wasserstein space during training. Instead of relying on strict invariance assumptions, we prove that our method is able to provide distributional robustness, thereby enhancing the out-of-distribution generalization performance on graph data. By leveraging the inherent graph structure, TAR effectively addresses distribution shifts. Our framework's superiority is demonstrated through standard testing on four graph OOD datasets and three class-imbalanced node classification datasets, exhibiting marked improvements over existing methods.
Abstract:We present a novel image editing scenario termed Text-grounded Object Generation (TOG), defined as generating a new object in the real image spatially conditioned by textual descriptions. Existing diffusion models exhibit limitations of spatial perception in complex real-world scenes, relying on additional modalities to enforce constraints, and TOG imposes heightened challenges on scene comprehension under the weak supervision of linguistic information. We propose a universal framework ST-LDM based on Swin-Transformer, which can be integrated into any latent diffusion model with training-free backward guidance. ST-LDM encompasses a global-perceptual autoencoder with adaptable compression scales and hierarchical visual features, parallel with deformable multimodal transformer to generate region-wise guidance for the subsequent denoising process. We transcend the limitation of traditional attention mechanisms that only focus on existing visual features by introducing deformable feature alignment to hierarchically refine spatial positioning fused with multi-scale visual and linguistic information. Extensive Experiments demonstrate that our model enhances the localization of attention mechanisms while preserving the generative capabilities inherent to diffusion models.
Abstract:Referring object removal refers to removing the specific object in an image referred by natural language expressions and filling the missing region with reasonable semantics. To address this task, we construct the ComCOCO, a synthetic dataset consisting of 136,495 referring expressions for 34,615 objects in 23,951 image pairs. Each pair contains an image with referring expressions and the ground truth after elimination. We further propose an end-to-end syntax-aware hybrid mapping network with an encoding-decoding structure. Linguistic features are hierarchically extracted at the syntactic level and fused in the downsampling process of visual features with multi-head attention. The feature-aligned pyramid network is leveraged to generate segmentation masks and replace internal pixels with region affinity learned from external semantics in high-level feature maps. Extensive experiments demonstrate that our model outperforms diffusion models and two-stage methods which process the segmentation and inpainting task separately by a significant margin.
Abstract:Deep learning and Convolutional Neural Networks (CNNs) have driven major transformations in diverse research areas. However, their limitations in handling low-frequency information present obstacles in certain tasks like interpreting global structures or managing smooth transition images. Despite the promising performance of transformer structures in numerous tasks, their intricate optimization complexities highlight the persistent need for refined CNN enhancements using limited resources. Responding to these complexities, we introduce a novel framework, the Multiscale Low-Frequency Memory (MLFM) Network, with the goal to harness the full potential of CNNs while keeping their complexity unchanged. The MLFM efficiently preserves low-frequency information, enhancing performance in targeted computer vision tasks. Central to our MLFM is the Low-Frequency Memory Unit (LFMU), which stores various low-frequency data and forms a parallel channel to the core network. A key advantage of MLFM is its seamless compatibility with various prevalent networks, requiring no alterations to their original core structure. Testing on ImageNet demonstrated substantial accuracy improvements in multiple 2D CNNs, including ResNet, MobileNet, EfficientNet, and ConvNeXt. Furthermore, we showcase MLFM's versatility beyond traditional image classification by successfully integrating it into image-to-image translation tasks, specifically in semantic segmentation networks like FCN and U-Net. In conclusion, our work signifies a pivotal stride in the journey of optimizing the efficacy and efficiency of CNNs with limited resources. This research builds upon the existing CNN foundations and paves the way for future advancements in computer vision. Our codes are available at https://github.com/AlphaWuSeu/ MLFM.
Abstract:A robust and efficient optimization-based 2D/3D registration framework is crucial for the navigation system of orthopedic surgical robots. It can provide precise position information of surgical instruments and implants during surgery. While artificial intelligence technology has advanced rapidly in recent years, traditional optimization-based registration methods remain indispensable in the field of 2D/3D registration.he exceptional precision of this method enables it to be considered as a post-processing step of the learning-based methods, thereby offering a reliable assurance for registration. In this paper, we present a coarse-to-fine registration framework based on the CMA-ES algorithm. We conducted intensive testing of our method using data from different parts of the spine. The results shows the effectiveness of the proposed framework on real orthopedic spine surgery clinical data. This work can be viewed as an additional extension that complements the optimization-based methods employed in our previous studies.
Abstract:Image-based rigid 2D/3D registration is a critical technique for fluoroscopic guided surgical interventions. In recent years, some learning-based fully differentiable methods have produced beneficial outcomes while the process of feature extraction and gradient flow transmission still lack controllability and interpretability. To alleviate these problems, in this work, we propose a novel fully differentiable correlation-driven network using a dual-branch CNN-transformer encoder which enables the network to extract and separate low-frequency global features from high-frequency local features. A correlation-driven loss is further proposed for low-frequency feature and high-frequency feature decomposition based on embedded information. Besides, a training strategy that learns to approximate a convex-shape similarity function is applied in our work. We test our approach on a in-house datasetand show that it outperforms both existing fully differentiable learning-based registration approaches and the conventional optimization-based baseline.
Abstract:Vertebrae identification in arbitrary fields-of-view plays a crucial role in diagnosing spine disease. Most spine CT contain only local regions, such as the neck, chest, and abdomen. Therefore, identification should not depend on specific vertebrae or a particular number of vertebrae being visible. Existing methods at the spine-level are unable to meet this challenge. In this paper, we propose a three-stage method to address the challenges in 3D CT vertebrae identification at vertebrae-level. By sequentially performing the tasks of vertebrae localization, segmentation, and identification, the anatomical prior information of the vertebrae is effectively utilized throughout the process. Specifically, we introduce a dual-factor density clustering algorithm to acquire localization information for individual vertebra, thereby facilitating subsequent segmentation and identification processes. In addition, to tackle the issue of interclass similarity and intra-class variability, we pre-train our identification network by using a supervised contrastive learning method. To further optimize the identification results, we estimated the uncertainty of the classification network and utilized the message fusion module to combine the uncertainty scores, while aggregating global information about the spine. Our method achieves state-of-the-art results on the VerSe19 and VerSe20 challenge benchmarks. Additionally, our approach demonstrates outstanding generalization performance on an collected dataset containing a wide range of abnormal cases.
Abstract:We present a novel deep learning-based framework: Embedded Feature Similarity Optimization with Specific Parameter Initialization (SOPI) for 2D/3D registration which is a most challenging problem due to the difficulty such as dimensional mismatch, heavy computation load and lack of golden evaluating standard. The framework we designed includes a parameter specification module to efficiently choose initialization pose parameter and a fine-registration network to align images. The proposed framework takes extracting multi-scale features into consideration using a novel composite connection encoder with special training techniques. The method is compared with both learning-based methods and optimization-based methods to further evaluate the performance. Our experiments demonstrate that the method in this paper has improved the registration performance, and thereby outperforms the existing methods in terms of accuracy and running time. We also show the potential of the proposed method as an initial pose estimator.
Abstract:An effective backbone network is important to deep learning-based Deformable Medical Image Registration (DMIR), because it extracts and matches the features between two images to discover the mutual correspondence for fine registration. However, the existing deep networks focus on single image situation and are limited in registration task which is performed on paired images. Therefore, we advance a novel backbone network, XMorpher, for the effective corresponding feature representation in DMIR. 1) It proposes a novel full transformer architecture including dual parallel feature extraction networks which exchange information through cross attention, thus discovering multi-level semantic correspondence while extracting respective features gradually for final effective registration. 2) It advances the Cross Attention Transformer (CAT) blocks to establish the attention mechanism between images which is able to find the correspondence automatically and prompts the features to fuse efficiently in the network. 3) It constrains the attention computation between base windows and searching windows with different sizes, and thus focuses on the local transformation of deformable registration and enhances the computing efficiency at the same time. Without any bells and whistles, our XMorpher gives Voxelmorph 2.8% improvement on DSC , demonstrating its effective representation of the features from the paired images in DMIR. We believe that our XMorpher has great application potential in more paired medical images. Our XMorpher is open on https://github.com/Solemoon/XMorpher
Abstract:In this paper, we propose a novel Single Noisy Audio De-noising Framework (SNA-DF) for speech denoising using only single noisy audio samples, which overcomes the limi-tation of constructing either noisy-clean training pairs or multiple independent noisy audio samples. The proposed SNA-DF contains two modules: training audio pairs gener-ated module and audio denoising module. The first module adopts a random audio sub-sampler on single noisy audio samples for the generation of training audio pairs. The sub-sampled training audio pairs are then fed into the audio denoising module, which employs a deep complex U-Net incorporating a complex two-stage transformer (cTSTM) to extract both magnitude and phase information for taking full advantage of the complex features of single noisy au-dios. Experimental results show that the proposed SNA-DF not only eliminates the high dependence on clean targets of traditional audio denoising methods, but also outperforms the methods using multiple noisy audio samples.