Abstract:Image-based rigid 2D/3D registration is a critical technique for fluoroscopic guided surgical interventions. In recent years, some learning-based fully differentiable methods have produced beneficial outcomes while the process of feature extraction and gradient flow transmission still lack controllability and interpretability. To alleviate these problems, in this work, we propose a novel fully differentiable correlation-driven network using a dual-branch CNN-transformer encoder which enables the network to extract and separate low-frequency global features from high-frequency local features. A correlation-driven loss is further proposed for low-frequency feature and high-frequency feature decomposition based on embedded information. Besides, a training strategy that learns to approximate a convex-shape similarity function is applied in our work. We test our approach on a in-house datasetand show that it outperforms both existing fully differentiable learning-based registration approaches and the conventional optimization-based baseline.
Abstract:We present a novel deep learning-based framework: Embedded Feature Similarity Optimization with Specific Parameter Initialization (SOPI) for 2D/3D registration which is a most challenging problem due to the difficulty such as dimensional mismatch, heavy computation load and lack of golden evaluating standard. The framework we designed includes a parameter specification module to efficiently choose initialization pose parameter and a fine-registration network to align images. The proposed framework takes extracting multi-scale features into consideration using a novel composite connection encoder with special training techniques. The method is compared with both learning-based methods and optimization-based methods to further evaluate the performance. Our experiments demonstrate that the method in this paper has improved the registration performance, and thereby outperforms the existing methods in terms of accuracy and running time. We also show the potential of the proposed method as an initial pose estimator.