A robust and efficient optimization-based 2D/3D registration framework is crucial for the navigation system of orthopedic surgical robots. It can provide precise position information of surgical instruments and implants during surgery. While artificial intelligence technology has advanced rapidly in recent years, traditional optimization-based registration methods remain indispensable in the field of 2D/3D registration.he exceptional precision of this method enables it to be considered as a post-processing step of the learning-based methods, thereby offering a reliable assurance for registration. In this paper, we present a coarse-to-fine registration framework based on the CMA-ES algorithm. We conducted intensive testing of our method using data from different parts of the spine. The results shows the effectiveness of the proposed framework on real orthopedic spine surgery clinical data. This work can be viewed as an additional extension that complements the optimization-based methods employed in our previous studies.