Abstract:A robust and efficient optimization-based 2D/3D registration framework is crucial for the navigation system of orthopedic surgical robots. It can provide precise position information of surgical instruments and implants during surgery. While artificial intelligence technology has advanced rapidly in recent years, traditional optimization-based registration methods remain indispensable in the field of 2D/3D registration.he exceptional precision of this method enables it to be considered as a post-processing step of the learning-based methods, thereby offering a reliable assurance for registration. In this paper, we present a coarse-to-fine registration framework based on the CMA-ES algorithm. We conducted intensive testing of our method using data from different parts of the spine. The results shows the effectiveness of the proposed framework on real orthopedic spine surgery clinical data. This work can be viewed as an additional extension that complements the optimization-based methods employed in our previous studies.
Abstract:Vertebrae identification in arbitrary fields-of-view plays a crucial role in diagnosing spine disease. Most spine CT contain only local regions, such as the neck, chest, and abdomen. Therefore, identification should not depend on specific vertebrae or a particular number of vertebrae being visible. Existing methods at the spine-level are unable to meet this challenge. In this paper, we propose a three-stage method to address the challenges in 3D CT vertebrae identification at vertebrae-level. By sequentially performing the tasks of vertebrae localization, segmentation, and identification, the anatomical prior information of the vertebrae is effectively utilized throughout the process. Specifically, we introduce a dual-factor density clustering algorithm to acquire localization information for individual vertebra, thereby facilitating subsequent segmentation and identification processes. In addition, to tackle the issue of interclass similarity and intra-class variability, we pre-train our identification network by using a supervised contrastive learning method. To further optimize the identification results, we estimated the uncertainty of the classification network and utilized the message fusion module to combine the uncertainty scores, while aggregating global information about the spine. Our method achieves state-of-the-art results on the VerSe19 and VerSe20 challenge benchmarks. Additionally, our approach demonstrates outstanding generalization performance on an collected dataset containing a wide range of abnormal cases.