Abstract:Mental manipulation severely undermines mental wellness by covertly and negatively distorting decision-making. While there is an increasing interest in mental health care within the natural language processing community, progress in tackling manipulation remains limited due to the complexity of detecting subtle, covert tactics in conversations. In this paper, we propose Intent-Aware Prompting (IAP), a novel approach for detecting mental manipulations using large language models (LLMs), providing a deeper understanding of manipulative tactics by capturing the underlying intents of participants. Experimental results on the MentalManip dataset demonstrate superior effectiveness of IAP against other advanced prompting strategies. Notably, our approach substantially reduces false negatives, helping detect more instances of mental manipulation with minimal misjudgment of positive cases. The code of this paper is available at https://github.com/Anton-Jiayuan-MA/Manip-IAP.
Abstract:In domain-specific contexts, particularly mental health, abstractive summarization requires advanced techniques adept at handling specialized content to generate domain-relevant and faithful summaries. In response to this, we introduce a guided summarizer equipped with a dual-encoder and an adapted decoder that utilizes novel domain-specific guidance signals, i.e., mental health terminologies and contextually rich sentences from the source document, to enhance its capacity to align closely with the content and context of guidance, thereby generating a domain-relevant summary. Additionally, we present a post-editing correction model to rectify errors in the generated summary, thus enhancing its consistency with the original content in detail. Evaluation on the MentSum dataset reveals that our model outperforms existing baseline models in terms of both ROUGE and FactCC scores. Although the experiments are specifically designed for mental health posts, the methodology we've developed offers broad applicability, highlighting its versatility and effectiveness in producing high-quality domain-specific summaries.
Abstract:Identifying offensive language is essential for maintaining safety and sustainability in the social media era. Though large language models (LLMs) have demonstrated encouraging potential in social media analytics, they lack thorough evaluation when in offensive language detection, particularly in multilingual environments. We for the first time evaluate multilingual offensive language detection of LLMs in three languages: English, Spanish, and German with three LLMs, GPT-3.5, Flan-T5, and Mistral, in both monolingual and multilingual settings. We further examine the impact of different prompt languages and augmented translation data for the task in non-English contexts. Furthermore, we discuss the impact of the inherent bias in LLMs and the datasets in the mispredictions related to sensitive topics.
Abstract:As an essential task in information extraction (IE), Event-Event Causal Relation Extraction (ECRE) aims to identify and classify the causal relationships between event mentions in natural language texts. However, existing research on ECRE has highlighted two critical challenges, including the lack of document-level modeling and causal hallucinations. In this paper, we propose a Knowledge-guided binary Question Answering (KnowQA) method with event structures for ECRE, consisting of two stages: Event Structure Construction and Binary Question Answering. We conduct extensive experiments under both zero-shot and fine-tuning settings with large language models (LLMs) on the MECI and MAVEN-ERE datasets. Experimental results demonstrate the usefulness of event structures on document-level ECRE and the effectiveness of KnowQA by achieving state-of-the-art on the MECI dataset. We observe not only the effectiveness but also the high generalizability and low inconsistency of our method, particularly when with complete event structures after fine-tuning the models.
Abstract:Large language models (LLMs) have demonstrated promising potential in various downstream tasks, including machine translation. However, prior work on LLM-based machine translation has mainly focused on better utilizing training data, demonstrations, or pre-defined and universal knowledge to improve performance, with a lack of consideration of decision-making like human translators. In this paper, we incorporate Thinker with the Drift-Diffusion Model (Thinker-DDM) to address this issue. We then redefine the Drift-Diffusion process to emulate human translators' dynamic decision-making under constrained resources. We conduct extensive experiments under the high-resource, low-resource, and commonsense translation settings using the WMT22 and CommonMT datasets, in which Thinker-DDM outperforms baselines in the first two scenarios. We also perform additional analysis and evaluation on commonsense translation to illustrate the high effectiveness and efficacy of the proposed method.
Abstract:Deep learning-based natural language processing (NLP) models, particularly pre-trained language models (PLMs), have been revealed to be vulnerable to adversarial attacks. However, the adversarial examples generated by many mainstream word-level adversarial attack models are neither valid nor natural, leading to the loss of semantic maintenance, grammaticality, and human imperceptibility. Based on the exceptional capacity of language understanding and generation of large language models (LLMs), we propose LLM-Attack, which aims at generating both valid and natural adversarial examples with LLMs. The method consists of two stages: word importance ranking (which searches for the most vulnerable words) and word synonym replacement (which substitutes them with their synonyms obtained from LLMs). Experimental results on the Movie Review (MR), IMDB, and Yelp Review Polarity datasets against the baseline adversarial attack models illustrate the effectiveness of LLM-Attack, and it outperforms the baselines in human and GPT-4 evaluation by a significant margin. The model can generate adversarial examples that are typically valid and natural, with the preservation of semantic meaning, grammaticality, and human imperceptibility.
Abstract:In-context learning (ICL) has become the default method for using large language models (LLMs), making the exploration of its limitations and understanding the underlying causes crucial. In this paper, we find that ICL falls short of handling specification-heavy tasks, which are tasks with complicated and extensive task specifications, requiring several hours for ordinary humans to master, such as traditional information extraction tasks. The performance of ICL on these tasks mostly cannot reach half of the state-of-the-art results. To explore the reasons behind this failure, we conduct comprehensive experiments on 18 specification-heavy tasks with various LLMs and identify three primary reasons: inability to specifically understand context, misalignment in task schema comprehension with humans, and inadequate long-text understanding ability. Furthermore, we demonstrate that through fine-tuning, LLMs can achieve decent performance on these tasks, indicating that the failure of ICL is not an inherent flaw of LLMs, but rather a drawback of existing alignment methods that renders LLMs incapable of handling complicated specification-heavy tasks via ICL. To substantiate this, we perform dedicated instruction tuning on LLMs for these tasks and observe a notable improvement. We hope the analyses in this paper could facilitate advancements in alignment methods enabling LLMs to meet more sophisticated human demands.
Abstract:Event understanding aims at understanding the content and relationship of events within texts, which covers multiple complicated information extraction tasks: event detection, event argument extraction, and event relation extraction. To facilitate related research and application, we present an event understanding toolkit OmniEvent, which features three desiderata: (1) Comprehensive. OmniEvent supports mainstream modeling paradigms of all the event understanding tasks and the processing of 15 widely-used English and Chinese datasets. (2) Fair. OmniEvent carefully handles the inconspicuous evaluation pitfalls reported in Peng et al. (2023), which ensures fair comparisons between different models. (3) Easy-to-use. OmniEvent is designed to be easily used by users with varying needs. We provide off-the-shelf models that can be directly deployed as web services. The modular framework also enables users to easily implement and evaluate new event understanding models with OmniEvent. The toolkit (https://github.com/THU-KEG/OmniEvent) is publicly released along with the demonstration website and video (https://omnievent.xlore.cn/).
Abstract:Massive amounts of data are the foundation of data-driven recommendation models. As an inherent nature of big data, data heterogeneity widely exists in real-world recommendation systems. It reflects the differences in the properties among sub-populations. Ignoring the heterogeneity in recommendation data could limit the performance of recommendation models, hurt the sub-populational robustness, and make the models misled by biases. However, data heterogeneity has not attracted substantial attention in the recommendation community. Therefore, it inspires us to adequately explore and exploit heterogeneity for solving the above problems and assisting data analysis. In this work, we focus on exploring two representative categories of heterogeneity in recommendation data that is the heterogeneity of prediction mechanism and covariate distribution and propose an algorithm that explores the heterogeneity through a bilevel clustering method. Furthermore, the uncovered heterogeneity is exploited for two purposes in recommendation scenarios which are prediction with multiple sub-models and supporting debias. Extensive experiments on real-world data validate the existence of heterogeneity in recommendation data and the effectiveness of exploring and exploiting data heterogeneity in recommendation.
Abstract:The diverse relationships among real-world events, including coreference, temporal, causal, and subevent relations, are fundamental to understanding natural languages. However, two drawbacks of existing datasets limit event relation extraction (ERE) tasks: (1) Small scale. Due to the annotation complexity, the data scale of existing datasets is limited, which cannot well train and evaluate data-hungry models. (2) Absence of unified annotation. Different types of event relations naturally interact with each other, but existing datasets only cover limited relation types at once, which prevents models from taking full advantage of relation interactions. To address these issues, we construct a unified large-scale human-annotated ERE dataset MAVEN-ERE with improved annotation schemes. It contains 103,193 event coreference chains, 1,216,217 temporal relations, 57,992 causal relations, and 15,841 subevent relations, which is larger than existing datasets of all the ERE tasks by at least an order of magnitude. Experiments show that ERE on MAVEN-ERE is quite challenging, and considering relation interactions with joint learning can improve performances. The dataset and source codes can be obtained from https://github.com/THU-KEG/MAVEN-ERE.