Abstract:We detail the training of the LLM360 K2-65B model, scaling up our 360-degree OPEN SOURCE approach to the largest and most powerful models under project LLM360. While open-source LLMs continue to advance, the answer to "How are the largest LLMs trained?" remains unclear within the community. The implementation details for such high-capacity models are often protected due to business considerations associated with their high cost. This lack of transparency prevents LLM researchers from leveraging valuable insights from prior experience, e.g., "What are the best practices for addressing loss spikes?" The LLM360 K2 project addresses this gap by providing full transparency and access to resources accumulated during the training of LLMs at the largest scale. This report highlights key elements of the K2 project, including our first model, K2 DIAMOND, a 65 billion-parameter LLM that surpasses LLaMA-65B and rivals LLaMA2-70B, while requiring fewer FLOPs and tokens. We detail the implementation steps and present a longitudinal analysis of K2 DIAMOND's capabilities throughout its training process. We also outline ongoing projects such as TXT360, setting the stage for future models in the series. By offering previously unavailable resources, the K2 project also resonates with the 360-degree OPEN SOURCE principles of transparency, reproducibility, and accessibility, which we believe are vital in the era of resource-intensive AI research.
Abstract:World model-based searching and planning are widely recognized as a promising path toward human-level physical intelligence. However, current driving world models primarily rely on video diffusion models, which specialize in visual generation but lack the flexibility to incorporate other modalities like action. In contrast, autoregressive transformers have demonstrated exceptional capability in modeling multimodal data. Our work aims to unify both driving model simulation and trajectory planning into a single sequence modeling problem. We introduce a multimodal driving language based on interleaved image and action tokens, and develop DrivingGPT to learn joint world modeling and planning through standard next-token prediction. Our DrivingGPT demonstrates strong performance in both action-conditioned video generation and end-to-end planning, outperforming strong baselines on large-scale nuPlan and NAVSIM benchmarks.
Abstract:In domain-specific contexts, particularly mental health, abstractive summarization requires advanced techniques adept at handling specialized content to generate domain-relevant and faithful summaries. In response to this, we introduce a guided summarizer equipped with a dual-encoder and an adapted decoder that utilizes novel domain-specific guidance signals, i.e., mental health terminologies and contextually rich sentences from the source document, to enhance its capacity to align closely with the content and context of guidance, thereby generating a domain-relevant summary. Additionally, we present a post-editing correction model to rectify errors in the generated summary, thus enhancing its consistency with the original content in detail. Evaluation on the MentSum dataset reveals that our model outperforms existing baseline models in terms of both ROUGE and FactCC scores. Although the experiments are specifically designed for mental health posts, the methodology we've developed offers broad applicability, highlighting its versatility and effectiveness in producing high-quality domain-specific summaries.
Abstract:Existing reconstruction-based novel view synthesis methods for driving scenes focus on synthesizing camera views along the recorded trajectory of the ego vehicle. Their image rendering performance will severely degrade on viewpoints falling out of the recorded trajectory, where camera rays are untrained. We propose FreeVS, a novel fully generative approach that can synthesize camera views on free new trajectories in real driving scenes. To control the generation results to be 3D consistent with the real scenes and accurate in viewpoint pose, we propose the pseudo-image representation of view priors to control the generation process. Viewpoint transformation simulation is applied on pseudo-images to simulate camera movement in each direction. Once trained, FreeVS can be applied to any validation sequences without reconstruction process and synthesis views on novel trajectories. Moreover, we propose two new challenging benchmarks tailored to driving scenes, which are novel camera synthesis and novel trajectory synthesis, emphasizing the freedom of viewpoints. Given that no ground truth images are available on novel trajectories, we also propose to evaluate the consistency of images synthesized on novel trajectories with 3D perception models. Experiments on the Waymo Open Dataset show that FreeVS has a strong image synthesis performance on both the recorded trajectories and novel trajectories. Project Page: https://freevs24.github.io/
Abstract:Driving world models have gained increasing attention due to their ability to model complex physical dynamics. However, their superb modeling capability is yet to be fully unleashed due to the limited video diversity in current driving datasets. We introduce DrivingDojo, the first dataset tailor-made for training interactive world models with complex driving dynamics. Our dataset features video clips with a complete set of driving maneuvers, diverse multi-agent interplay, and rich open-world driving knowledge, laying a stepping stone for future world model development. We further define an action instruction following (AIF) benchmark for world models and demonstrate the superiority of the proposed dataset for generating action-controlled future predictions.
Abstract:Social media is recognized as an important source for deriving insights into public opinion dynamics and social impacts due to the vast textual data generated daily and the 'unconstrained' behavior of people interacting on these platforms. However, such analyses prove challenging due to the semantic shift phenomenon, where word meanings evolve over time. This paper proposes an unsupervised dynamic word embedding method to capture longitudinal semantic shifts in social media data without predefined anchor words. The method leverages word co-occurrence statistics and dynamic updating to adapt embeddings over time, addressing the challenges of data sparseness, imbalanced distributions, and synergistic semantic effects. Evaluated on a large COVID-19 Twitter dataset, the method reveals semantic evolution patterns of vaccine- and symptom-related entities across different pandemic stages, and their potential correlations with real-world statistics. Our key contributions include the dynamic embedding technique, empirical analysis of COVID-19 semantic shifts, and discussions on enhancing semantic shift modeling for computational social science research. This study enables capturing longitudinal semantic dynamics on social media to understand public discourse and collective phenomena.
Abstract:Camera-based 3D occupancy prediction has recently garnered increasing attention in outdoor driving scenes. However, research in indoor scenes remains relatively unexplored. The core differences in indoor scenes lie in the complexity of scene scale and the variance in object size. In this paper, we propose a novel method, named ISO, for predicting indoor scene occupancy using monocular images. ISO harnesses the advantages of a pretrained depth model to achieve accurate depth predictions. Furthermore, we introduce the Dual Feature Line of Sight Projection (D-FLoSP) module within ISO, which enhances the learning of 3D voxel features. To foster further research in this domain, we introduce Occ-ScanNet, a large-scale occupancy benchmark for indoor scenes. With a dataset size 40 times larger than the NYUv2 dataset, it facilitates future scalable research in indoor scene analysis. Experimental results on both NYUv2 and Occ-ScanNet demonstrate that our method achieves state-of-the-art performance. The dataset and code are made publicly at https://github.com/hongxiaoy/ISO.git.
Abstract:End-to-end autonomous driving has garnered widespread attention. Current end-to-end approaches largely rely on the supervision from perception tasks such as detection, tracking, and map segmentation to aid in learning scene representations. However, these methods require extensive annotations, hindering the data scalability. To address this challenge, we propose a novel self-supervised method to enhance end-to-end driving without the need for costly labels. Specifically, our framework \textbf{LAW} uses a LAtent World model to predict future latent features based on the predicted ego actions and the latent feature of the current frame. The predicted latent features are supervised by the actually observed features in the future. This supervision jointly optimizes the latent feature learning and action prediction, which greatly enhances the driving performance. As a result, our approach achieves state-of-the-art performance in both open-loop and closed-loop benchmarks without costly annotations.
Abstract:Automatic radiology report generation can significantly benefit the labor-intensive process of report writing by radiologists, especially for 3D radiographs like CT scans, which are crucial for broad clinical diagnostics yet underexplored compared to 2D radiographs. Existing methods often handle 3D volumes either slice-wise or with aggressive downsampling due to current GPU memory limitations, which results in a loss of the inherent 3D nature and critical details. To overcome these issues, we introduce a novel framework that efficiently and effectively generates radiology reports for high-resolution (HR) 3D volumes, based on large language models (LLMs). Specifically, our framework utilizes low-resolution (LR) visual tokens as queries to mine information from HR tokens, preserving detailed HR information while reducing computational costs by only processing HR informed LR visual queries. Further benefiting the field, we curate and release BIMCV-RG, a new dataset with 5,328 HR 3D volumes and paired reports, establishing the first benchmarks for report generation from 3D HR medical images. Our method consistently surpasses existing methods on this benchmark across three different settings: normal-resolution, high-resolution inputs, and zero-shot domain transfer, all at an acceptable computational cost, trainable on a single A100-80G.
Abstract:General world models represent a crucial pathway toward achieving Artificial General Intelligence (AGI), serving as the cornerstone for various applications ranging from virtual environments to decision-making systems. Recently, the emergence of the Sora model has attained significant attention due to its remarkable simulation capabilities, which exhibits an incipient comprehension of physical laws. In this survey, we embark on a comprehensive exploration of the latest advancements in world models. Our analysis navigates through the forefront of generative methodologies in video generation, where world models stand as pivotal constructs facilitating the synthesis of highly realistic visual content. Additionally, we scrutinize the burgeoning field of autonomous-driving world models, meticulously delineating their indispensable role in reshaping transportation and urban mobility. Furthermore, we delve into the intricacies inherent in world models deployed within autonomous agents, shedding light on their profound significance in enabling intelligent interactions within dynamic environmental contexts. At last, we examine challenges and limitations of world models, and discuss their potential future directions. We hope this survey can serve as a foundational reference for the research community and inspire continued innovation. This survey will be regularly updated at: https://github.com/GigaAI-research/General-World-Models-Survey.