Abstract:Palmprint recognition is widely used in biometric systems, yet real-world performance often degrades due to feature distribution shifts caused by heterogeneous deployment conditions. Most deep palmprint models assume a closed and stationary distribution, leading to overfitting to dataset-specific textures rather than learning domain-invariant representations. Although data augmentation is commonly used to mitigate this issue, it assumes augmented samples can approximate the target deployment distribution, an assumption that often fails under significant domain mismatch. To address this limitation, we propose PalmBridge, a plug-and-play feature-space alignment framework for open-set palmprint verification based on vector quantization. Rather than relying solely on data-level augmentation, PalmBridge learns a compact set of representative vectors directly from training features. During enrollment and verification, each feature vector is mapped to its nearest representative vector under a minimum-distance criterion, and the mapped vector is then blended with the original vector. This design suppresses nuisance variation induced by domain shifts while retaining discriminative identity cues. The representative vectors are jointly optimized with the backbone network using task supervision, a feature-consistency objective, and an orthogonality regularization term to form a stable and well-structured shared embedding space. Furthermore, we analyze feature-to-representative mappings via assignment consistency and collision rate to assess model's sensitivity to blending weights. Experiments on multiple palmprint datasets and backbone architectures show that PalmBridge consistently reduces EER in intra-dataset open-set evaluation and improves cross-dataset generalization with negligible to modest runtime overhead.




Abstract:Palmprint recognition techniques have advanced significantly in recent years, enabling reliable recognition even when palmprints are captured in uncontrolled or challenging environments. However, this strength also introduces new risks, as publicly available palmprint images can be misused by adversaries for malicious activities. Despite this growing concern, research on methods to obscure or anonymize palmprints remains largely unexplored. Thus, it is essential to develop a palmprint de-identification technique capable of removing identity-revealing features while retaining the image's utility and preserving non-sensitive information. In this paper, we propose a training-free framework that utilizes pre-trained diffusion models to generate diverse, high-quality palmprint images that conceal identity features for de-identification purposes. To ensure greater stability and controllability in the synthesis process, we incorporate a semantic-guided embedding fusion alongside a prior interpolation mechanism. We further propose the de-identification ratio, a novel metric for intuitive de-identification assessment. Extensive experiments across multiple palmprint datasets and recognition methods demonstrate that our method effectively conceals identity-related traits with significant diversity across de-identified samples. The de-identified samples preserve high visual fidelity and maintain excellent usability, achieving a balance between de-identification and retaining non-identity information.