Abstract:Current deep learning (DL)-based palmprint verification models rely on centralized training with large datasets, which raises significant privacy concerns due to biometric data's sensitive and immutable nature. Federated learning~(FL), a privacy-preserving distributed learning paradigm, offers a compelling alternative by enabling collaborative model training without the need for data sharing. However, FL-based palmprint verification faces critical challenges, including data heterogeneity from diverse identities and the absence of standardized evaluation benchmarks. This paper addresses these gaps by establishing a comprehensive benchmark for FL-based palmprint verification, which explicitly defines and evaluates two practical scenarios: closed-set and open-set verification. We propose FedPalm, a unified FL framework that balances local adaptability with global generalization. Each client trains a personalized textural expert tailored to local data and collaboratively contributes to a shared global textural expert for extracting generalized features. To further enhance verification performance, we introduce a Textural Expert Interaction Module that dynamically routes textural features among experts to generate refined side textural features. Learnable parameters are employed to model relationships between original and side features, fostering cross-texture-expert interaction and improving feature discrimination. Extensive experiments validate the effectiveness of FedPalm, demonstrating robust performance across both scenarios and providing a promising foundation for advancing FL-based palmprint verification research.
Abstract:Reducing radiation doses benefits patients, however, the resultant low-dose computed tomography (LDCT) images often suffer from clinically unacceptable noise and artifacts. While deep learning (DL) shows promise in LDCT reconstruction, it requires large-scale data collection from multiple clients, raising privacy concerns. Federated learning (FL) has been introduced to address these privacy concerns; however, current methods are typically tailored to specific scanning protocols, which limits their generalizability and makes them less effective for unseen protocols. To address these issues, we propose SCAN-PhysFed, a novel SCanning- and ANatomy-level personalized Physics-Driven Federated learning paradigm for LDCT reconstruction. Since the noise distribution in LDCT data is closely tied to scanning protocols and anatomical structures being scanned, we design a dual-level physics-informed way to address these challenges. Specifically, we incorporate physical and anatomical prompts into our physics-informed hypernetworks to capture scanning- and anatomy-specific information, enabling dual-level physics-driven personalization of imaging features. These prompts are derived from the scanning protocol and the radiology report generated by a medical large language model (MLLM), respectively. Subsequently, client-specific decoders project these dual-level personalized imaging features back into the image domain. Besides, to tackle the challenge of unseen data, we introduce a novel protocol vector-quantization strategy (PVQS), which ensures consistent performance across new clients by quantifying the unseen scanning code as one of the codes in the scanning codebook. Extensive experimental results demonstrate the superior performance of SCAN-PhysFed on public datasets.
Abstract:Dataset distillation (DD) enhances training efficiency and reduces bandwidth by condensing large datasets into smaller synthetic ones. It enables models to achieve performance comparable to those trained on the raw full dataset and has become a widely adopted method for data sharing. However, security concerns in DD remain underexplored. Existing studies typically assume that malicious behavior originates from dataset owners during the initial distillation process, where backdoors are injected into raw datasets. In contrast, this work is the first to address a more realistic and concerning threat: attackers may intercept the dataset distribution process, inject backdoors into the distilled datasets, and redistribute them to users. While distilled datasets were previously considered resistant to backdoor attacks, we demonstrate that they remain vulnerable to such attacks. Furthermore, we show that attackers do not even require access to any raw data to inject the backdoors successfully. Specifically, our approach reconstructs conceptual archetypes for each class from the model trained on the distilled dataset. Backdoors are then injected into these archetypes to update the distilled dataset. Moreover, we ensure the updated dataset not only retains the backdoor but also preserves the original optimization trajectory, thus maintaining the knowledge of the raw dataset. To achieve this, a hybrid loss is designed to integrate backdoor information along the benign optimization trajectory, ensuring that previously learned information is not forgotten. Extensive experiments demonstrate that distilled datasets are highly vulnerable to backdoor attacks, with risks pervasive across various raw datasets, distillation methods, and downstream training strategies. Moreover, our attack method is efficient, capable of synthesizing a malicious distilled dataset in under one minute in certain cases.
Abstract:Mobile and Web-of-Things (WoT) devices at the network edge generate vast amounts of data for machine learning applications, yet privacy concerns hinder centralized model training. Federated Learning (FL) allows clients (devices) to collaboratively train a shared model coordinated by a central server without transfer private data, but inherent statistical heterogeneity among clients presents challenges, often leading to a dilemma between clients' needs for personalized local models and the server's goal of building a generalized global model. Existing FL methods typically prioritize either global generalization or local personalization, resulting in a trade-off between these two objectives and limiting the full potential of diverse client data. To address this challenge, we propose a novel framework that simultaneously enhances global generalization and local personalization by Rethinking Information Representation in the Federated learning process (FedRIR). Specifically, we introduce Masked Client-Specific Learning (MCSL), which isolates and extracts fine-grained client-specific features tailored to each client's unique data characteristics, thereby enhancing personalization. Concurrently, the Information Distillation Module (IDM) refines the global shared features by filtering out redundant client-specific information, resulting in a purer and more robust global representation that enhances generalization. By integrating the refined global features with the isolated client-specific features, we construct enriched representations that effectively capture both global patterns and local nuances, thereby improving the performance of downstream tasks on the client. The code is available at https://github.com/Deep-Imaging-Group/FedRIR.
Abstract:Palmprint recognition has emerged as a prominent biometric technology, widely applied in diverse scenarios. Traditional handcrafted methods for palmprint recognition often fall short in representation capability, as they heavily depend on researchers' prior knowledge. Deep learning (DL) has been introduced to address this limitation, leveraging its remarkable successes across various domains. While existing surveys focus narrowly on specific tasks within palmprint recognition-often grounded in traditional methodologies-there remains a significant gap in comprehensive research exploring DL-based approaches across all facets of palmprint recognition. This paper bridges that gap by thoroughly reviewing recent advancements in DL-powered palmprint recognition. The paper systematically examines progress across key tasks, including region-of-interest segmentation, feature extraction, and security/privacy-oriented challenges. Beyond highlighting these advancements, the paper identifies current challenges and uncovers promising opportunities for future research. By consolidating state-of-the-art progress, this review serves as a valuable resource for researchers, enabling them to stay abreast of cutting-edge technologies and drive innovation in palmprint recognition.
Abstract:Multi-modality (MM) semi-supervised learning (SSL) based medical image segmentation has recently gained increasing attention for its ability to utilize MM data and reduce reliance on labeled images. However, current methods face several challenges: (1) Complex network designs hinder scalability to scenarios with more than two modalities. (2) Focusing solely on modality-invariant representation while neglecting modality-specific features, leads to incomplete MM learning. (3) Leveraging unlabeled data with generative methods can be unreliable for SSL. To address these problems, we propose Double Bank Dual Consistency (DBDC), a novel MM-SSL approach for medical image segmentation. To address challenge (1), we propose a modality all-in-one segmentation network that accommodates data from any number of modalities, removing the limitation on modality count. To address challenge (2), we design two learnable plug-in banks, Modality-Level Modulation bank (MLMB) and Modality-Level Prototype (MLPB) bank, to capture both modality-invariant and modality-specific knowledge. These banks are updated using our proposed Modality Prototype Contrastive Learning (MPCL). Additionally, we design Modality Adaptive Weighting (MAW) to dynamically adjust learning weights for each modality, ensuring balanced MM learning as different modalities learn at different rates. Finally, to address challenge (3), we introduce a Dual Consistency (DC) strategy that enforces consistency at both the image and feature levels without relying on generative methods. We evaluate our method on a 2-to-4 modality segmentation task using three open-source datasets, and extensive experiments show that our method outperforms state-of-the-art approaches.
Abstract:Recently, finger knuckle prints (FKPs) have gained attention due to their rich textural patterns, positioning them as a promising biometric for identity recognition. Prior FKP recognition methods predominantly leverage first-order feature descriptors, which capture intricate texture details but fail to account for structural information. Emerging research, however, indicates that second-order textures, which describe the curves and arcs of the textures, encompass this overlooked structural information. This paper introduces a novel FKP recognition approach, the Dual-Order Texture Competition Network (DOTCNet), designed to capture texture information in FKP images comprehensively. DOTCNet incorporates three dual-order texture competitive modules (DTCMs), each targeting textures at different scales. Each DTCM employs a learnable texture descriptor, specifically a learnable Gabor filter (LGF), to extract texture features. By leveraging LGFs, the network extracts first and second order textures to describe fine textures and structural features thoroughly. Furthermore, an attention mechanism enhances relevant features in the first-order features, thereby highlighting significant texture details. For second-order features, a competitive mechanism emphasizes structural information while reducing noise from higher-order features. Extensive experimental results reveal that DOTCNet significantly outperforms several standard algorithms on the publicly available PolyU-FKP dataset.
Abstract:The long-tail distribution of real driving data poses challenges for training and testing autonomous vehicles (AV), where rare yet crucial safety-critical scenarios are infrequent. And virtual simulation offers a low-cost and efficient solution. This paper proposes a near-miss focused training framework for AV. Utilizing the driving scenario information provided by sensors in the simulator, we design novel reward functions, which enable background vehicles (BV) to generate near-miss scenarios and ensure gradients exist not only in collision-free scenes but also in collision scenarios. And then leveraging the Robust Adversarial Reinforcement Learning (RARL) framework for simultaneous training of AV and BV to gradually enhance AV and BV capabilities, as well as generating near-miss scenarios tailored to different levels of AV capabilities. Results from three testing strategies indicate that the proposed method generates scenarios closer to near-miss, thus enhancing the capabilities of both AVs and BVs throughout training.
Abstract:In the fast-evolving field of medical image analysis, Deep Learning (DL)-based methods have achieved tremendous success. However, these methods require plaintext data for training and inference stages, raising privacy concerns, especially in the sensitive area of medical data. To tackle these concerns, this paper proposes a novel framework that uses surrogate images for analysis, eliminating the need for plaintext images. This approach is called Frequency-domain Exchange Style Fusion (FESF). The framework includes two main components: Image Hidden Module (IHM) and Image Quality Enhancement Module~(IQEM). The~IHM performs in the frequency domain, blending the features of plaintext medical images into host medical images, and then combines this with IQEM to improve and create surrogate images effectively. During the diagnostic model training process, only surrogate images are used, enabling anonymous analysis without any plaintext data during both training and inference stages. Extensive evaluations demonstrate that our framework effectively preserves the privacy of medical images and maintains diagnostic accuracy of DL models at a relatively high level, proving its effectiveness across various datasets and DL-based models.
Abstract:Palmprint biometrics garner heightened attention in palm-scanning payment and social security due to their distinctive attributes. However, prevailing methodologies singularly prioritize texture orientation, neglecting the significant texture scale dimension. We design an innovative network for concurrently extracting intra-scale and inter-scale features to redress this limitation. This paper proposes a scale-aware competitive network (SAC-Net), which includes the Inner-Scale Competition Module (ISCM) and the Across-Scale Competition Module (ASCM) to capture texture characteristics related to orientation and scale. ISCM efficiently integrates learnable Gabor filters and a self-attention mechanism to extract rich orientation data and discern textures with long-range discriminative properties. Subsequently, ASCM leverages a competitive strategy across various scales to effectively encapsulate the competitive texture scale elements. By synergizing ISCM and ASCM, our method adeptly characterizes palmprint features. Rigorous experimentation across three benchmark datasets unequivocally demonstrates our proposed approach's exceptional recognition performance and resilience relative to state-of-the-art alternatives.