Department of Statistics, University of Michigan, Ann Arbor, Michigan Institute for Data Science, University of Michigan, Ann Arbor
Abstract:Moving beyond the traditional paradigm of adapting internet-pretrained models to physical tasks, we present DM0, an Embodied-Native Vision-Language-Action (VLA) framework designed for Physical AI. Unlike approaches that treat physical grounding as a fine-tuning afterthought, DM0 unifies embodied manipulation and navigation by learning from heterogeneous data sources from the onset. Our methodology follows a comprehensive three-stage pipeline: Pretraining, Mid-Training, and Post-Training. First, we conduct large-scale unified pretraining on the Vision-Language Model (VLM) using diverse corpora--seamlessly integrating web text, autonomous driving scenarios, and embodied interaction logs-to jointly acquire semantic knowledge and physical priors. Subsequently, we build a flow-matching action expert atop the VLM. To reconcile high-level reasoning with low-level control, DM0 employs a hybrid training strategy: for embodied data, gradients from the action expert are not backpropagated to the VLM to preserve generalized representations, while the VLM remains trainable on non-embodied data. Furthermore, we introduce an Embodied Spatial Scaffolding strategy to construct spatial Chain-of-Thought (CoT) reasoning, effectively constraining the action solution space. Experiments on the RoboChallenge benchmark demonstrate that DM0 achieves state-of-the-art performance in both Specialist and Generalist settings on Table30.
Abstract:Low-dose computed tomography (LDCT) reconstruction is fundamentally challenged by severe noise and compromised data fidelity under reduced radiation exposure. Most existing methods operate either in the image or post-log projection domain, which fails to fully exploit the rich structural information in pre-log measurements while being highly susceptible to noise. The requisite logarithmic transformation critically amplifies noise within these data, imposing exceptional demands on reconstruction precision. To overcome these challenges, we propose PLOT-CT, a novel framework for Pre-Log vOronoi decomposiTion-assisted CT generation. Our method begins by applying Voronoi decomposition to pre-log sinograms, disentangling the data into distinct underlying components, which are embedded in separate latent spaces. This explicit decomposition significantly enhances the model's capacity to learn discriminative features, directly improving reconstruction accuracy by mitigating noise and preserving information inherent in the pre-log domain. Extensive experiments demonstrate that PLOT-CT achieves state-of-the-art performance, attaining a 2.36dB PSNR improvement over traditional methods at the 1e4 incident photon level in the pre-log domain.
Abstract:Dispersion-based photonics-assisted microwave measurement systems provide immense potential for real-time analysis of wideband and dynamic signals. However, they face two critical challenges: a difficulty in achieving high frequency resolution over a wideband analysis bandwidth, and a reliance on large-bandwidth-and-high-sampling-rate oscilloscopes to capture the resulting ultra-narrow pulses. We introduce a dynamic dispersion accumulation technique to overcome these limitations. By circulating the optical signal in fiber loops containing a dispersion-compensating fiber, we achieve a high accumulated dispersion of -215700 ps/nm. This high dispersion relaxes the required chirp rate of the chirped optical signal, enabling two distinct advantages: When the analysis bandwidth is fixed, a lower chirp rate enables a longer temporal period, yielding a record-high frequency resolution of 27.9 MHz; When the temporal period is fixed, a lower chirp rate enables a smaller bandwidth, generating a wider pulse and thus relaxing pulse sampling requirements at the expense of analysis bandwidth. This sacrifice in analysis bandwidth can be compensated by a duty-cycle-enabling technique, which holds the potential to extend the analysis bandwidth beyond 100 GHz. This work breaks the performance and hardware limitations in dispersion-based systems, paving the way for high frequency resolution, wideband microwave measurement systems that are both real-time and cost-effective.
Abstract:Decoder-only large language models are increasingly used as behavioral encoders for user representation learning, yet the impact of attention masking on the quality of user embeddings remains underexplored. In this work, we conduct a systematic study of causal, hybrid, and bidirectional attention masks within a unified contrastive learning framework trained on large-scale real-world Alipay data that integrates long-horizon heterogeneous user behaviors. To improve training dynamics when transitioning from causal to bidirectional attention, we propose Gradient-Guided Soft Masking, a gradient-based pre-warmup applied before a linear scheduler that gradually opens future attention during optimization. Evaluated on 9 industrial user cognition benchmarks covering prediction, preference, and marketing sensitivity tasks, our approach consistently yields more stable training and higher-quality bidirectional representations compared with causal, hybrid, and scheduler-only baselines, while remaining compatible with decoder pretraining. Overall, our findings highlight the importance of masking design and training transition in adapting decoder-only LLMs for effective user representation learning. Our code is available at https://github.com/JhCircle/Deepfind-GGSM.
Abstract:The evolution of Large Language Model (LLM) agents for software engineering (SWE) is constrained by the scarcity of verifiable datasets, a bottleneck stemming from the complexity of constructing executable environments across diverse languages. To address this, we introduce MEnvAgent, a Multi-language framework for automated Environment construction that facilitates scalable generation of verifiable task instances. MEnvAgent employs a multi-agent Planning-Execution-Verification architecture to autonomously resolve construction failures and integrates a novel Environment Reuse Mechanism that reduces computational overhead by incrementally patching historical environments. Evaluations on MEnvBench, a new benchmark comprising 1,000 tasks across 10 languages, demonstrate that MEnvAgent outperforms baselines, improving Fail-to-Pass (F2P) rates by 8.6% while reducing time costs by 43%. Additionally, we demonstrate the utility of MEnvAgent by constructing MEnvData-SWE, the largest open-source polyglot dataset of realistic verifiable Docker environments to date, alongside solution trajectories that enable consistent performance gains on SWE tasks across a wide range of models. Our code, benchmark, and dataset are available at https://github.com/ernie-research/MEnvAgent.
Abstract:Vision-centric retrieval for VQA requires retrieving images to supply missing visual cues and integrating them into the reasoning process. However, selecting the right images and integrating them effectively into the model's reasoning remains challenging.To address this challenge, we propose R3G, a modular Reasoning-Retrieval-Reranking framework.It first produces a brief reasoning plan that specifies the required visual cues, then adopts a two-stage strategy, with coarse retrieval followed by fine-grained reranking, to select evidence images.On MRAG-Bench, R3G improves accuracy across six MLLM backbones and nine sub-scenarios, achieving state-of-the-art overall performance. Ablations show that sufficiency-aware reranking and reasoning steps are complementary, helping the model both choose the right images and use them well. We release code and data at https://github.com/czh24/R3G.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Large language model (LLM) routing assigns each query to the most suitable model from an ensemble. We introduce LLMRouterBench, a large-scale benchmark and unified framework for LLM routing. It comprises over 400K instances from 21 datasets and 33 models. Moreover, it provides comprehensive metrics for both performance-oriented routing and performance-cost trade-off routing, and integrates 10 representative routing baselines. Using LLMRouterBench, we systematically re-evaluate the field. While confirming strong model complementarity-the central premise of LLM routing-we find that many routing methods exhibit similar performance under unified evaluation, and several recent approaches, including commercial routers, fail to reliably outperform a simple baseline. Meanwhile, a substantial gap remains to the Oracle, driven primarily by persistent model-recall failures. We further show that backbone embedding models have limited impact, that larger ensembles exhibit diminishing returns compared to careful model curation, and that the benchmark also enables latency-aware analysis. All code and data are available at https://github.com/ynulihao/LLMRouterBench.
Abstract:Accurate segmentation of the pancreas and its lesions in CT scans is crucial for the precise diagnosis and treatment of pancreatic cancer. However, it remains a highly challenging task due to several factors such as low tissue contrast with surrounding organs, blurry anatomical boundaries, irregular organ shapes, and the small size of lesions. To tackle these issues, we propose DB-MSMUNet (Dual-Branch Multi-scale Mamba UNet), a novel encoder-decoder architecture designed specifically for robust pancreatic segmentation. The encoder is constructed using a Multi-scale Mamba Module (MSMM), which combines deformable convolutions and multi-scale state space modeling to enhance both global context modeling and local deformation adaptation. The network employs a dual-decoder design: the edge decoder introduces an Edge Enhancement Path (EEP) to explicitly capture boundary cues and refine fuzzy contours, while the area decoder incorporates a Multi-layer Decoder (MLD) to preserve fine-grained details and accurately reconstruct small lesions by leveraging multi-scale deep semantic features. Furthermore, Auxiliary Deep Supervision (ADS) heads are added at multiple scales to both decoders, providing more accurate gradient feedback and further enhancing the discriminative capability of multi-scale features. We conduct extensive experiments on three datasets: the NIH Pancreas dataset, the MSD dataset, and a clinical pancreatic tumor dataset provided by collaborating hospitals. DB-MSMUNet achieves Dice Similarity Coefficients of 89.47%, 87.59%, and 89.02%, respectively, outperforming most existing state-of-the-art methods in terms of segmentation accuracy, edge preservation, and robustness across different datasets. These results demonstrate the effectiveness and generalizability of the proposed method for real-world pancreatic CT segmentation tasks.
Abstract:To address hallucination issues in large language models (LLMs), this paper proposes a method for mitigating prompt-induced hallucinations. Building on a knowledge distillation chain-style model, we introduce a code module to guide knowledge-graph exploration and incorporate code as part of the chain-of-thought prompt, forming an external knowledge input that provides more accurate and structured information to the model. Based on this design, we develop an improved knowledge distillation chain-style model and leverage it to analyze and constrain the reasoning process of LLMs, thereby improving inference accuracy. We empirically evaluate the proposed approach using GPT-4 and LLaMA-3.3 on multiple public datasets. Experimental results demonstrate that incorporating code modules significantly enhances the model's ability to capture contextual information and effectively mitigates prompt-induced hallucinations. Specifically, HIT@1, HIT@3, and HIT@5 improve by 15.64%, 13.38%, and 13.28%, respectively. Moreover, the proposed method achieves HIT@1, HIT@3, and HIT@5 scores exceeding 95% across several evaluation settings. These results indicate that the proposed approach substantially reduces hallucination behavior while improving the accuracy and verifiability of large language models.