Abstract:While multimodal large language models demonstrate strong performance in complex reasoning tasks, they pose significant challenges related to model complexity during deployment, especially for resource-limited devices. In this paper, we propose an automatic pruning method for large vision-language models to enhance the efficiency of multimodal reasoning. Conventional methods rely on the training data of the original model to select the proper pruning ratio for different network components. However, these methods are impractical for large vision-language models due to the unaffordable search costs caused by web-scale training corpus. In contrast, our approach only leverages a small number of samples to search for the desired pruning policy by maximizing its generalization ability on unknown training data while maintaining the model accuracy, which enables the achievement of an optimal trade-off between accuracy and efficiency for large visual language models. Specifically, we formulate the generalization gap of the pruning strategy using the structural risk minimization principle. Based on both task performance and generalization capability, we iteratively search for the optimal pruning policy within a given search space and optimize the vision projector to evolve the search space with higher upper bound of performance. We conduct extensive experiments on the ScienceQA, Vizwiz, MM-vet, and LLaVA-Bench datasets for the task of visual question answering. Using only 64 samples for pruning policy search, EfficientLLaVA achieves an accuracy of 83.05% on ScienceQA, along with a $\times$ 1.8 speedup compared to the dense LLaVA-v1.5-7B model.
Abstract:Graphical user interface (GUI) has become integral to modern society, making it crucial to be understood for human-centric systems. However, unlike natural images or documents, GUIs comprise artificially designed graphical elements arranged to convey specific semantic meanings. Current multi-modal large language models (MLLMs) already proficient in processing graphical and textual components suffer from hurdles in GUI understanding due to the lack of explicit spatial structure modeling. Moreover, obtaining high-quality spatial structure data is challenging due to privacy issues and noisy environments. To address these challenges, we present MP-GUI, a specially designed MLLM for GUI understanding. MP-GUI features three precisely specialized perceivers to extract graphical, textual, and spatial modalities from the screen as GUI-tailored visual clues, with spatial structure refinement strategy and adaptively combined via a fusion gate to meet the specific preferences of different GUI understanding tasks. To cope with the scarcity of training data, we also introduce a pipeline for automatically data collecting. Extensive experiments demonstrate that MP-GUI achieves impressive results on various GUI understanding tasks with limited data.
Abstract:Mobile manipulation is the fundamental challenge for robotics to assist humans with diverse tasks and environments in everyday life. However, conventional mobile manipulation approaches often struggle to generalize across different tasks and environments because of the lack of large-scale training. In contrast, recent advances in vision-language-action (VLA) models have shown impressive generalization capabilities, but these foundation models are developed for fixed-base manipulation tasks. Therefore, we propose an efficient policy adaptation framework named MoManipVLA to transfer pre-trained VLA models of fix-base manipulation to mobile manipulation, so that high generalization ability across tasks and environments can be achieved in mobile manipulation policy. Specifically, we utilize pre-trained VLA models to generate waypoints of the end-effector with high generalization ability. We design motion planning objectives for the mobile base and the robot arm, which aim at maximizing the physical feasibility of the trajectory. Finally, we present an efficient bi-level objective optimization framework for trajectory generation, where the upper-level optimization predicts waypoints for base movement to enhance the manipulator policy space, and the lower-level optimization selects the optimal end-effector trajectory to complete the manipulation task. In this way, MoManipVLA can adjust the position of the robot base in a zero-shot manner, thus making the waypoints predicted from the fixed-base VLA models feasible. Extensive experimental results on OVMM and the real world demonstrate that MoManipVLA achieves a 4.2% higher success rate than the state-of-the-art mobile manipulation, and only requires 50 training cost for real world deployment due to the strong generalization ability in the pre-trained VLA models.
Abstract:In this paper, we propose a general framework for universal zero-shot goal-oriented navigation. Existing zero-shot methods build inference framework upon large language models (LLM) for specific tasks, which differs a lot in overall pipeline and fails to generalize across different types of goal. Towards the aim of universal zero-shot navigation, we propose a uniform graph representation to unify different goals, including object category, instance image and text description. We also convert the observation of agent into an online maintained scene graph. With this consistent scene and goal representation, we preserve most structural information compared with pure text and are able to leverage LLM for explicit graph-based reasoning. Specifically, we conduct graph matching between the scene graph and goal graph at each time instant and propose different strategies to generate long-term goal of exploration according to different matching states. The agent first iteratively searches subgraph of goal when zero-matched. With partial matching, the agent then utilizes coordinate projection and anchor pair alignment to infer the goal location. Finally scene graph correction and goal verification are applied for perfect matching. We also present a blacklist mechanism to enable robust switch between stages. Extensive experiments on several benchmarks show that our UniGoal achieves state-of-the-art zero-shot performance on three studied navigation tasks with a single model, even outperforming task-specific zero-shot methods and supervised universal methods.
Abstract:This paper presents InteractEdit, a novel framework for zero-shot Human-Object Interaction (HOI) editing, addressing the challenging task of transforming an existing interaction in an image into a new, desired interaction while preserving the identities of the subject and object. Unlike simpler image editing scenarios such as attribute manipulation, object replacement or style transfer, HOI editing involves complex spatial, contextual, and relational dependencies inherent in humans-objects interactions. Existing methods often overfit to the source image structure, limiting their ability to adapt to the substantial structural modifications demanded by new interactions. To address this, InteractEdit decomposes each scene into subject, object, and background components, then employs Low-Rank Adaptation (LoRA) and selective fine-tuning to preserve pretrained interaction priors while learning the visual identity of the source image. This regularization strategy effectively balances interaction edits with identity consistency. We further introduce IEBench, the most comprehensive benchmark for HOI editing, which evaluates both interaction editing and identity preservation. Our extensive experiments show that InteractEdit significantly outperforms existing methods, establishing a strong baseline for future HOI editing research and unlocking new possibilities for creative and practical applications. Code will be released upon publication.
Abstract:A non-invasive brain-computer interface (BCI) enables direct interaction between the user and external devices, typically via electroencephalogram (EEG) signals. However, decoding EEG signals across different headsets remains a significant challenge due to differences in the number and locations of the electrodes. To address this challenge, we propose a spatial distillation based distribution alignment (SDDA) approach for heterogeneous cross-headset transfer in non-invasive BCIs. SDDA uses first spatial distillation to make use of the full set of electrodes, and then input/feature/output space distribution alignments to cope with the significant differences between the source and target domains. To our knowledge, this is the first work to use knowledge distillation in cross-headset transfers. Extensive experiments on six EEG datasets from two BCI paradigms demonstrated that SDDA achieved superior performance in both offline unsupervised domain adaptation and online supervised domain adaptation scenarios, consistently outperforming 10 classical and state-of-the-art transfer learning algorithms.
Abstract:The automatic reconstruction of 3D computer-aided design (CAD) models from CAD sketches has recently gained significant attention in the computer vision community. Most existing methods, however, rely on vector CAD sketches and 3D ground truth for supervision, which are often difficult to be obtained in industrial applications and are sensitive to noise inputs. We propose viewing CAD reconstruction as a specific instance of sparse-view 3D reconstruction to overcome these limitations. While this reformulation offers a promising perspective, existing 3D reconstruction methods typically require natural images and corresponding camera poses as inputs, which introduces two major significant challenges: (1) modality discrepancy between CAD sketches and natural images, and (2) difficulty of accurate camera pose estimation for CAD sketches. To solve these issues, we first transform the CAD sketches into representations resembling natural images and extract corresponding masks. Next, we manually calculate the camera poses for the orthographic views to ensure accurate alignment within the 3D coordinate system. Finally, we employ a customized sparse-view 3D reconstruction method to achieve high-quality reconstructions from aligned orthographic views. By leveraging raster CAD sketches for self-supervision, our approach eliminates the reliance on vector CAD sketches and 3D ground truth. Experiments on the Sub-Fusion360 dataset demonstrate that our proposed method significantly outperforms previous approaches in CAD reconstruction performance and exhibits strong robustness to noisy inputs.
Abstract:Objective: An electroencephalography (EEG)-based brain-computer interface (BCI) serves as a direct communication pathway between the human brain and an external device. While supervised learning has been extensively explored for motor imagery (MI) EEG classification, small data quantity has been a key factor limiting the performance of deep feature learning. Methods: This paper proposes a knowledge-driven time-space-frequency based multi-view contrastive network (MVCNet) for MI EEG decoding in BCIs. MVCNet integrates knowledge from the time, space, and frequency domains into the training process through data augmentations from multiple views, fostering more discriminative feature learning of the characteristics of EEG data. We introduce a cross-view contrasting module to learn from different augmented views and a cross-model contrasting module to enhance the consistency of features extracted between knowledge-guided and data-driven models. Results: The combination of EEG data augmentation strategies was systematically investigated for more informative supervised contrastive learning. Experiments on four public MI datasets and three different architectures demonstrated that MVCNet outperformed 10 existing approaches. Significance: Our approach can significantly boost EEG classification performance beyond designated networks, showcasing the potential to enhance the feature learning process for better EEG decoding.
Abstract:The knowledge tracing (KT) problem is an extremely important topic in personalized education, which aims to predict whether students can correctly answer the next question based on their past question-answer records. Prior work on this task mainly focused on learning the sequence of behaviors based on the IDs or textual information. However, these studies usually fail to capture students' sufficient behavioral patterns without reasoning with rich world knowledge about questions. In this paper, we propose a large language models (LLMs)-based framework for KT, named \texttt{\textbf{LLM-KT}}, to integrate the strengths of LLMs and traditional sequence interaction models. For task-level alignment, we design Plug-and-Play instruction to align LLMs with KT, leveraging LLMs' rich knowledge and powerful reasoning capacity. For modality-level alignment, we design the plug-in context and sequence to integrate multiple modalities learned by traditional methods. To capture the long context of history records, we present a plug-in context to flexibly insert the compressed context embedding into LLMs using question-specific and concept-specific tokens. Furthermore, we introduce a plug-in sequence to enhance LLMs with sequence interaction behavior representation learned by traditional sequence models using a sequence adapter. Extensive experiments show that \texttt{\textbf{LLM-KT}} obtains state-of-the-art performance on four typical datasets by comparing it with approximately 20 strong baselines.
Abstract:Various pipes are extensively used in both industrial settings and daily life, but the pipe inspection especially those with narrow sizes are still very challenging with tremendous time and manufacturing consumed. Quadrupedal robots, inspired from patrol dogs, can be a substitution of traditional solutions but always suffer from navigation and locomotion difficulties. In this paper, we introduce a Reinforcement Learning (RL) based method to train a policy enabling the quadrupedal robots to cross narrow pipes adaptively. A new privileged visual information and a new reward function are defined to tackle the problems. Experiments on both simulation and real world scenarios were completed, demonstrated that the proposed method can achieve the pipe-crossing task even with unexpected obstacles inside.