Abstract:Objective: An electroencephalogram (EEG)-based brain-computer interface (BCI) enables direct communication between the human brain and a computer. Due to individual differences and non-stationarity of EEG signals, such BCIs usually require a subject-specific calibration session before each use, which is time-consuming and user-unfriendly. Transfer learning (TL) has been proposed to shorten or eliminate this calibration, but existing TL approaches mainly consider offline settings, where all unlabeled EEG trials from the new user are available. Methods: This paper proposes Test-Time Information Maximization Ensemble (T-TIME) to accommodate the most challenging online TL scenario, where unlabeled EEG data from the new user arrive in a stream, and immediate classification is performed. T-TIME initializes multiple classifiers from the aligned source data. When an unlabeled test EEG trial arrives, T-TIME first predicts its labels using ensemble learning, and then updates each classifier by conditional entropy minimization and adaptive marginal distribution regularization. Our code is publicized. Results: Extensive experiments on three public motor imagery based BCI datasets demonstrated that T-TIME outperformed about 20 classical and state-of-the-art TL approaches. Significance: To our knowledge, this is the first work on test time adaptation for calibration-free EEG-based BCIs, making plug-and-play BCIs possible.
Abstract:Performing general language-conditioned bimanual manipulation tasks is of great importance for many applications ranging from household service to industrial assembly. However, collecting bimanual manipulation data is expensive due to the high-dimensional action space, which poses challenges for conventional methods to handle general bimanual manipulation tasks. In contrast, unimanual policy has recently demonstrated impressive generalizability across a wide range of tasks because of scaled model parameters and training data, which can provide sharable manipulation knowledge for bimanual systems. To this end, we propose a plug-and-play method named AnyBimanual, which transfers pre-trained unimanual policy to general bimanual manipulation policy with few bimanual demonstrations. Specifically, we first introduce a skill manager to dynamically schedule the skill representations discovered from pre-trained unimanual policy for bimanual manipulation tasks, which linearly combines skill primitives with task-oriented compensation to represent the bimanual manipulation instruction. To mitigate the observation discrepancy between unimanual and bimanual systems, we present a visual aligner to generate soft masks for visual embedding of the workspace, which aims to align visual input of unimanual policy model for each arm with those during pretraining stage. AnyBimanual shows superiority on 12 simulated tasks from RLBench2 with a sizable 12.67% improvement in success rate over previous methods. Experiments on 9 real-world tasks further verify its practicality with an average success rate of 84.62%.
Abstract:A brain-computer interface (BCI) enables direct communication between the human brain and external devices. Electroencephalography (EEG) based BCIs are currently the most popular for able-bodied users. To increase user-friendliness, usually a small amount of user-specific EEG data are used for calibration, which may not be enough to develop a pure data-driven decoding model. To cope with this typical calibration data shortage challenge in EEG-based BCIs, this paper proposes a parameter-free channel reflection (CR) data augmentation approach that incorporates prior knowledge on the channel distributions of different BCI paradigms in data augmentation. Experiments on eight public EEG datasets across four different BCI paradigms (motor imagery, steady-state visual evoked potential, P300, and seizure classifications) using different decoding algorithms demonstrated that: 1) CR is effective, i.e., it can noticeably improve the classification accuracy; 2) CR is robust, i.e., it consistently outperforms existing data augmentation approaches in the literature; and, 3) CR is flexible, i.e., it can be combined with other data augmentation approaches to further increase the performance. We suggest that data augmentation approaches like CR should be an essential step in EEG-based BCIs. Our code is available online.
Abstract:This paper proposes a distributed on-orbit spacecraft assembly algorithm, where future spacecraft can assemble modules with different functions on orbit to form a spacecraft structure with specific functions. This form of spacecraft organization has the advantages of reconfigurability, fast mission response and easy maintenance. Reasonable and efficient on-orbit self-reconfiguration algorithms play a crucial role in realizing the benefits of distributed spacecraft. This paper adopts the framework of imitation learning combined with reinforcement learning for strategy learning of module handling order. A robot arm motion algorithm is then designed to execute the handling sequence. We achieve the self-reconfiguration handling task by creating a map on the surface of the module, completing the path point planning of the robotic arm using A*. The joint planning of the robotic arm is then accomplished through forward and reverse kinematics. Finally, the results are presented in Unity3D.
Abstract:Structuring latent representations in a hierarchical manner enables models to learn patterns at multiple levels of abstraction. However, most prevalent image understanding models focus on visual similarity, and learning visual hierarchies is relatively unexplored. In this work, for the first time, we introduce a learning paradigm that can encode user-defined multi-level visual hierarchies in hyperbolic space without requiring explicit hierarchical labels. As a concrete example, first, we define a part-based image hierarchy using object-level annotations within and across images. Then, we introduce an approach to enforce the hierarchy using contrastive loss with pairwise entailment metrics. Finally, we discuss new evaluation metrics to effectively measure hierarchical image retrieval. Encoding these complex relationships ensures that the learned representations capture semantic and structural information that transcends mere visual similarity. Experiments in part-based image retrieval show significant improvements in hierarchical retrieval tasks, demonstrating the capability of our model in capturing visual hierarchies.
Abstract:Machine learning has achieved great success in electroencephalogram (EEG) based brain-computer interfaces (BCIs). Most existing BCI studies focused on improving the decoding accuracy, with only a few considering the adversarial security. Although many adversarial defense approaches have been proposed in other application domains such as computer vision, previous research showed that their direct extensions to BCIs degrade the classification accuracy on benign samples. This phenomenon greatly affects the applicability of adversarial defense approaches to EEG-based BCIs. To mitigate this problem, we propose alignment-based adversarial training (ABAT), which performs EEG data alignment before adversarial training. Data alignment aligns EEG trials from different domains to reduce their distribution discrepancies, and adversarial training further robustifies the classification boundary. The integration of data alignment and adversarial training can make the trained EEG classifiers simultaneously more accurate and more robust. Experiments on five EEG datasets from two different BCI paradigms (motor imagery classification, and event related potential recognition), three convolutional neural network classifiers (EEGNet, ShallowCNN and DeepCNN) and three different experimental settings (offline within-subject cross-block/-session classification, online cross-session classification, and pre-trained classifiers) demonstrated its effectiveness. It is very intriguing that adversarial attacks, which are usually used to damage BCI systems, can be used in ABAT to simultaneously improve the model accuracy and robustness.
Abstract:In this paper, we propose a post-training quantization framework of large vision-language models (LVLMs) for efficient multi-modal inference. Conventional quantization methods sequentially search the layer-wise rounding functions by minimizing activation discretization errors, which fails to acquire optimal quantization strategy without considering cross-layer dependency. On the contrary, we mine the cross-layer dependency that significantly influences discretization errors of the entire vision-language model, and embed this dependency into optimal quantization strategy searching with low search cost. Specifically, we observe the strong correlation between the activation entropy and the cross-layer dependency concerning output discretization errors. Therefore, we employ the entropy as the proxy to partition blocks optimally, which aims to achieve satisfying trade-offs between discretization errors and the search cost. Moreover, we optimize the visual encoder to disentangle the cross-layer dependency for fine-grained decomposition of search space, so that the search cost is further reduced without harming the quantization accuracy. Experimental results demonstrate that our method compresses the memory by 2.78x and increase generate speed by 1.44x about 13B LLaVA model without performance degradation on diverse multi-modal reasoning tasks. Code is available at https://github.com/ChangyuanWang17/QVLM.
Abstract:Federated learning (FL), integrating group fairness mechanisms, allows multiple clients to collaboratively train a global model that makes unbiased decisions for different populations grouped by sensitive attributes (e.g., gender and race). Due to its distributed nature, previous studies have demonstrated that FL systems are vulnerable to model poisoning attacks. However, these studies primarily focus on perturbing accuracy, leaving a critical question unexplored: Can an attacker bypass the group fairness mechanisms in FL and manipulate the global model to be biased? The motivations for such an attack vary; an attacker might seek higher accuracy, yet fairness considerations typically limit the accuracy of the global model or aim to cause ethical disruption. To address this question, we design a novel form of attack in FL, termed Profit-driven Fairness Attack (PFATTACK), which aims not to degrade global model accuracy but to bypass fairness mechanisms. Our fundamental insight is that group fairness seeks to weaken the dependence of outputs on input attributes related to sensitive information. In the proposed PFATTACK, an attacker can recover this dependence through local fine-tuning across various sensitive groups, thereby creating a biased yet accuracy-preserving malicious model and injecting it into FL through model replacement. Compared to attacks targeting accuracy, PFATTACK is more stealthy. The malicious model in PFATTACK exhibits subtle parameter variations relative to the original global model, making it robust against detection and filtering by Byzantine-resilient aggregations. Extensive experiments on benchmark datasets are conducted for four fair FL frameworks and three Byzantine-resilient aggregations against model poisoning, demonstrating the effectiveness and stealth of PFATTACK in bypassing group fairness mechanisms in FL.
Abstract:Embodied tasks require the agent to fully understand 3D scenes simultaneously with its exploration, so an online, real-time, fine-grained and highly-generalized 3D perception model is desperately needed. Since high-quality 3D data is limited, directly training such a model in 3D is almost infeasible. Meanwhile, vision foundation models (VFM) has revolutionized the field of 2D computer vision with superior performance, which makes the use of VFM to assist embodied 3D perception a promising direction. However, most existing VFM-assisted 3D perception methods are either offline or too slow that cannot be applied in practical embodied tasks. In this paper, we aim to leverage Segment Anything Model (SAM) for real-time 3D instance segmentation in an online setting. This is a challenging problem since future frames are not available in the input streaming RGB-D video, and an instance may be observed in several frames so object matching between frames is required. To address these challenges, we first propose a geometric-aware query lifting module to represent the 2D masks generated by SAM by 3D-aware queries, which is then iteratively refined by a dual-level query decoder. In this way, the 2D masks are transferred to fine-grained shapes on 3D point clouds. Benefit from the query representation for 3D masks, we can compute the similarity matrix between the 3D masks from different views by efficient matrix operation, which enables real-time inference. Experiments on ScanNet, ScanNet200, SceneNN and 3RScan show our method achieves leading performance even compared with offline methods. Our method also demonstrates great generalization ability in several zero-shot dataset transferring experiments and show great potential in open-vocabulary and data-efficient setting. Code and demo are available at https://xuxw98.github.io/ESAM/, with only one RTX 3090 GPU required for training and evaluation.
Abstract:This work addresses the certification of the local robustness of vision-based two-stage 6D object pose estimation. The two-stage method for object pose estimation achieves superior accuracy by first employing deep neural network-driven keypoint regression and then applying a Perspective-n-Point (PnP) technique. Despite advancements, the certification of these methods' robustness remains scarce. This research aims to fill this gap with a focus on their local robustness on the system level--the capacity to maintain robust estimations amidst semantic input perturbations. The core idea is to transform the certification of local robustness into neural network verification for classification tasks. The challenge is to develop model, input, and output specifications that align with off-the-shelf verification tools. To facilitate verification, we modify the keypoint detection model by substituting nonlinear operations with those more amenable to the verification processes. Instead of injecting random noise into images, as is common, we employ a convex hull representation of images as input specifications to more accurately depict semantic perturbations. Furthermore, by conducting a sensitivity analysis, we propagate the robustness criteria from pose to keypoint accuracy, and then formulating an optimal error threshold allocation problem that allows for the setting of a maximally permissible keypoint deviation thresholds. Viewing each pixel as an individual class, these thresholds result in linear, classification-akin output specifications. Under certain conditions, we demonstrate that the main components of our certification framework are both sound and complete, and validate its effects through extensive evaluations on realistic perturbations. To our knowledge, this is the first study to certify the robustness of large-scale, keypoint-based pose estimation given images in real-world scenarios.