Abstract:Epilepsy significantly impacts global health, affecting about 65 million people worldwide, along with various animal species. The diagnostic processes of epilepsy are often hindered by the transient and unpredictable nature of seizures. Here we propose a multi-space alignment approach based on cross-species and cross-modality electroencephalogram (EEG) data to enhance the detection capabilities and understanding of epileptic seizures. By employing deep learning techniques, including domain adaptation and knowledge distillation, our framework aligns cross-species and cross-modality EEG signals to enhance the detection capability beyond traditional within-species and with-modality models. Experiments on multiple surface and intracranial EEG datasets of humans and canines demonstrated substantial improvements in the detection accuracy, achieving over 90% AUC scores for cross-species and cross-modality seizure detection with extremely limited labeled data from the target species/modality. To our knowledge, this is the first study that demonstrates the effectiveness of integrating heterogeneous data from different species and modalities to improve EEG-based seizure detection performance. The approach may also be generalizable to different brain-computer interface paradigms, and suggests the possibility to combine data from different species/modalities to increase the amount of training data for large EEG models.
Abstract:An electroencephalogram (EEG) based brain-computer interface (BCI) enables direct communication between the brain and external devices. However, EEG-based BCIs face at least three major challenges in real-world applications: data scarcity and individual differences, adversarial vulnerability, and data privacy. While previous studies have addressed one or two of these issues, simultaneous accommodation of all three challenges remains challenging and unexplored. This paper fills this gap, by proposing an Augmented Robustness Ensemble (ARE) algorithm and integrating it into three privacy protection scenarios (centralized source-free transfer, federated source-free transfer, and source data perturbation), achieving simultaneously accurate decoding, adversarial robustness, and privacy protection of EEG-based BCIs. Experiments on three public EEG datasets demonstrated that our proposed approach outperformed over 10 classic and state-of-the-art approaches in both accuracy and robustness in all three privacy-preserving scenarios, even outperforming state-of-the-art transfer learning approaches that do not consider privacy protection at all. This is the first time that three major challenges in EEG-based BCIs can be addressed simultaneously, significantly improving the practicalness of EEG decoding in real-world BCIs.
Abstract:Motor imagery (MI) based brain-computer interfaces (BCIs) enable the direct control of external devices through the imagined movements of various body parts. Unlike previous systems that used fixed-length EEG trials for MI decoding, asynchronous BCIs aim to detect the user's MI without explicit triggers. They are challenging to implement, because the algorithm needs to first distinguish between resting-states and MI trials, and then classify the MI trials into the correct task, all without any triggers. This paper proposes a sliding window prescreening and classification (SWPC) approach for MI-based asynchronous BCIs, which consists of two modules: a prescreening module to screen MI trials out of the resting-state, and a classification module for MI classification. Both modules are trained with supervised learning followed by self-supervised learning, which refines the feature extractors. Within-subject and cross-subject asynchronous MI classifications on four different EEG datasets validated the effectiveness of SWPC, i.e., it always achieved the highest average classification accuracy, and outperformed the best state-of-the-art baseline on each dataset by about 2%.
Abstract:A brain-computer interface (BCI) enables direct communication between the brain and an external device. Electroencephalogram (EEG) is a common input signal for BCIs, due to its convenience and low cost. Most research on EEG-based BCIs focuses on the accurate decoding of EEG signals, while ignoring their security. Recent studies have shown that machine learning models in BCIs are vulnerable to adversarial attacks. This paper proposes adversarial filtering based evasion and backdoor attacks to EEG-based BCIs, which are very easy to implement. Experiments on three datasets from different BCI paradigms demonstrated the effectiveness of our proposed attack approaches. To our knowledge, this is the first study on adversarial filtering for EEG-based BCIs, raising a new security concern and calling for more attention on the security of BCIs.
Abstract:Objective: An electroencephalogram (EEG)-based brain-computer interface (BCI) enables direct communication between the human brain and a computer. Due to individual differences and non-stationarity of EEG signals, such BCIs usually require a subject-specific calibration session before each use, which is time-consuming and user-unfriendly. Transfer learning (TL) has been proposed to shorten or eliminate this calibration, but existing TL approaches mainly consider offline settings, where all unlabeled EEG trials from the new user are available. Methods: This paper proposes Test-Time Information Maximization Ensemble (T-TIME) to accommodate the most challenging online TL scenario, where unlabeled EEG data from the new user arrive in a stream, and immediate classification is performed. T-TIME initializes multiple classifiers from the aligned source data. When an unlabeled test EEG trial arrives, T-TIME first predicts its labels using ensemble learning, and then updates each classifier by conditional entropy minimization and adaptive marginal distribution regularization. Our code is publicized. Results: Extensive experiments on three public motor imagery based BCI datasets demonstrated that T-TIME outperformed about 20 classical and state-of-the-art TL approaches. Significance: To our knowledge, this is the first work on test time adaptation for calibration-free EEG-based BCIs, making plug-and-play BCIs possible.
Abstract:A brain-computer interface (BCI) enables direct communication between the human brain and external devices. Electroencephalography (EEG) based BCIs are currently the most popular for able-bodied users. To increase user-friendliness, usually a small amount of user-specific EEG data are used for calibration, which may not be enough to develop a pure data-driven decoding model. To cope with this typical calibration data shortage challenge in EEG-based BCIs, this paper proposes a parameter-free channel reflection (CR) data augmentation approach that incorporates prior knowledge on the channel distributions of different BCI paradigms in data augmentation. Experiments on eight public EEG datasets across four different BCI paradigms (motor imagery, steady-state visual evoked potential, P300, and seizure classifications) using different decoding algorithms demonstrated that: 1) CR is effective, i.e., it can noticeably improve the classification accuracy; 2) CR is robust, i.e., it consistently outperforms existing data augmentation approaches in the literature; and, 3) CR is flexible, i.e., it can be combined with other data augmentation approaches to further increase the performance. We suggest that data augmentation approaches like CR should be an essential step in EEG-based BCIs. Our code is available online.
Abstract:Semi-supervised domain adaptation (SSDA) aims at training a high-performance model for a target domain using few labeled target data, many unlabeled target data, and plenty of auxiliary data from a source domain. Previous works in SSDA mainly focused on learning transferable representations across domains. However, it is difficult to find a feature space where the source and target domains share the same conditional probability distribution. Additionally, there is no flexible and effective strategy extending existing unsupervised domain adaptation (UDA) approaches to SSDA settings. In order to solve the above two challenges, we propose a novel fine-tuning framework, semi-supervised transfer boosting (SS-TrBoosting). Given a well-trained deep learning-based UDA or SSDA model, we use it as the initial model, generate additional base learners by boosting, and then use all of them as an ensemble. More specifically, half of the base learners are generated by supervised domain adaptation, and half by semi-supervised learning. Furthermore, for more efficient data transmission and better data privacy protection, we propose a source data generation approach to extend SS-TrBoosting to semi-supervised source-free domain adaptation (SS-SFDA). Extensive experiments showed that SS-TrBoosting can be applied to a variety of existing UDA, SSDA and SFDA approaches to further improve their performance.
Abstract:Emotion recognition is a critical component of affective computing. Training accurate machine learning models for emotion recognition typically requires a large amount of labeled data. Due to the subtleness and complexity of emotions, multiple evaluators are usually needed for each affective sample to obtain its ground-truth label, which is expensive. To save the labeling cost, this paper proposes an inconsistency-based active learning approach for cross-task transfer between emotion classification and estimation. Affective norms are utilized as prior knowledge to connect the label spaces of categorical and dimensional emotions. Then, the prediction inconsistency on the two tasks for the unlabeled samples is used to guide sample selection in active learning for the target task. Experiments on within-corpus and cross-corpus transfers demonstrated that cross-task inconsistency could be a very valuable metric in active learning. To our knowledge, this is the first work that utilizes prior knowledge on affective norms and data in a different task to facilitate active learning for a new task, even the two tasks are from different datasets.
Abstract:Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy.
Abstract:Spiking neural networks (SNNs) aim to simulate real neural networks in the human brain with biologically plausible neurons. The leaky integrate-and-fire (LIF) neuron is one of the most widely studied SNN architectures. However, it has the vanishing gradient problem when trained with backpropagation. Additionally, its neuronal parameters are often manually specified and fixed, in contrast to the heterogeneity of real neurons in the human brain. This paper proposes a gated parametric neuron (GPN) to process spatio-temporal information effectively with the gating mechanism. Compared with the LIF neuron, the GPN has two distinguishing advantages: 1) it copes well with the vanishing gradients by improving the flow of gradient propagation; and, 2) it learns spatio-temporal heterogeneous neuronal parameters automatically. Additionally, we use the same gate structure to eliminate initial neuronal parameter selection and design a hybrid recurrent neural network-SNN structure. Experiments on two spike-based audio datasets demonstrated that the GPN network outperformed several state-of-the-art SNNs, could mitigate vanishing gradients, and had spatio-temporal heterogeneous parameters. Our work shows the ability of SNNs to handle long-term dependencies and achieve high performance simultaneously.