Abstract:A profound gap persists between artificial intelligence (AI) and clinical practice in medicine, primarily due to the lack of rigorous and cost-effective evaluation methodologies. State-of-the-art and state-of-the-practice AI model evaluations are limited to laboratory studies on medical datasets or direct clinical trials with no or solely patient-centered controls. Moreover, the crucial role of clinicians in collaborating with AI, pivotal for determining its impact on clinical practice, is often overlooked. For the first time, we emphasize the critical necessity for rigorous and cost-effective evaluation methodologies for AI models in clinical practice, featuring patient/clinician-centered (dual-centered) AI randomized controlled trials (DC-AI RCTs) and virtual clinician-based in-silico trials (VC-MedAI) as an effective proxy for DC-AI RCTs. Leveraging 7500 diagnosis records from two-phase inaugural DC-AI RCTs across 14 medical centers with 125 clinicians, our results demonstrate the necessity of DC-AI RCTs and the effectiveness of VC-MedAI. Notably, VC-MedAI performs comparably to human clinicians, replicating insights and conclusions from prospective DC-AI RCTs. We envision DC-AI RCTs and VC-MedAI as pivotal advancements, presenting innovative and transformative evaluation methodologies for AI models in clinical practice, offering a preclinical-like setting mirroring conventional medicine, and reshaping development paradigms in a cost-effective and fast-iterative manner. Chinese Clinical Trial Registration: ChiCTR2400086816.
Abstract:We propose MonoBox, an innovative box-supervised segmentation method constrained by monotonicity to liberate its training from the user-unfriendly box-tightness assumption. In contrast to conventional box-supervised segmentation, where the box edges must precisely touch the target boundaries, MonoBox leverages imprecisely-annotated boxes to achieve robust pixel-wise segmentation. The 'linchpin' is that, within the noisy zones around box edges, MonoBox discards the traditional misguiding multiple-instance learning loss, and instead optimizes a carefully-designed objective, termed monotonicity constraint. Along directions transitioning from the foreground to background, this new constraint steers responses to adhere to a trend of monotonically decreasing values. Consequently, the originally unreliable learning within the noisy zones is transformed into a correct and effective monotonicity optimization. Moreover, an adaptive label correction is introduced, enabling MonoBox to enhance the tightness of box annotations using predicted masks from the previous epoch and dynamically shrink the noisy zones as training progresses. We verify MonoBox in the box-supervised segmentation task of polyps, where satisfying box-tightness is challenging due to the vague boundaries between the polyp and normal tissues. Experiments on both public synthetic and in-house real noisy datasets demonstrate that MonoBox exceeds other anti-noise state-of-the-arts by improving Dice by at least 5.5% and 3.3%, respectively. Codes are at https://github.com/Huster-Hq/MonoBox.
Abstract:As AI becomes more integral in our lives, the need for transparency and responsibility grows. While natural language explanations (NLEs) are vital for clarifying the reasoning behind AI decisions, evaluating them through human judgments is complex and resource-intensive due to subjectivity and the need for fine-grained ratings. This study explores the alignment between ChatGPT and human assessments across multiple scales (i.e., binary, ternary, and 7-Likert scale). We sample 300 data instances from three NLE datasets and collect 900 human annotations for both informativeness and clarity scores as the text quality measurement. We further conduct paired comparison experiments under different ranges of subjectivity scores, where the baseline comes from 8,346 human annotations. Our results show that ChatGPT aligns better with humans in more coarse-grained scales. Also, paired comparisons and dynamic prompting (i.e., providing semantically similar examples in the prompt) improve the alignment. This research advances our understanding of large language models' capabilities to assess the text explanation quality in different configurations for responsible AI development.
Abstract:The robustness of AI-content detection models against cultivated attacks (e.g., paraphrasing or word switching) remains a significant concern. This study proposes a novel token-ensemble generation strategy to challenge the robustness of current AI-content detection approaches. We explore the ensemble attack strategy by completing the prompt with the next token generated from random candidate LLMs. We find the token-ensemble approach significantly drops the performance of AI-content detection models (The code and test sets will be released). Our findings reveal that token-ensemble generation poses a vital challenge to current detection models and underlines the need for advancing detection technologies to counter sophisticated adversarial strategies.
Abstract:Cold-start recommendation is one of the major challenges faced by recommender systems (RS). Herein, we focus on the user cold-start problem. Recently, methods utilizing side information or meta-learning have been used to model cold-start users. However, it is difficult to deploy these methods to industrial RS. There has not been much research that pays attention to the user cold-start problem in the matching stage. In this paper, we propose Cold & Warm Net based on expert models who are responsible for modeling cold-start and warm-up users respectively. A gate network is applied to incorporate the results from two experts. Furthermore, dynamic knowledge distillation acting as a teacher selector is introduced to assist experts in better learning user representation. With comprehensive mutual information, features highly relevant to user behavior are selected for the bias net which explicitly models user behavior bias. Finally, we evaluate our Cold & Warm Net on public datasets in comparison to models commonly applied in the matching stage and it outperforms other models on all user types. The proposed model has also been deployed on an industrial short video platform and achieves a significant increase in app dwell time and user retention rate.
Abstract:The convolutional neural network (CNN) learns the same object in different positions in images, which can improve the recognition accuracy of the model. An implication of this is that CNN may know where the object is. The usefulness of the features' spatial information in CNNs has not been well investigated. In this paper, we found that the model's learning of features' position information hindered the learning of the features' relationship. Therefore, we introduced Random Padding, a new type of padding method for training CNNs that impairs the architecture's capacity to learn position information by adding zero-padding randomly to half of the border of feature maps. Random Padding is parameter-free, simple to construct, and compatible with the majority of CNN-based recognition models. This technique is also complementary to data augmentations such as random cropping, rotation, flipping and erasing, and consistently improves the performance of image classification over strong baselines.
Abstract:Recent studies have alarmed that many online hate speeches are implicit. With its subtle nature, the explainability of the detection of such hateful speech has been a challenging problem. In this work, we examine whether ChatGPT can be used for providing natural language explanations (NLEs) for implicit hateful speech detection. We design our prompt to elicit concise ChatGPT-generated NLEs and conduct user studies to evaluate their qualities by comparison with human-generated NLEs. We discuss the potential and limitations of ChatGPT in the context of implicit hateful speech research.
Abstract:Recent studies have exploited advanced generative language models to generate Natural Language Explanations (NLE) for why a certain text could be hateful. We propose the Chain of Explanation Prompting method, inspired by the chain of thoughts study \cite{wei2022chain}, to generate high-quality NLE for implicit hate speech. We build a benchmark based on the selected mainstream Pre-trained Language Models (PLMs), including GPT-2, GPT-Neo, OPT, T5, and BART, with various evaluation metrics from lexical, semantic, and faithful aspects. To further evaluate the quality of the generated NLE from human perceptions, we hire human annotators to score the informativeness and clarity of the generated NLE. Then, we inspect which automatic evaluation metric could be best correlated with the human-annotated informativeness and clarity metric scores.
Abstract:Recommender System (RS) is an important online application that affects billions of users every day. The mainstream RS ranking framework is composed of two parts: a Multi-Task Learning model (MTL) that predicts various user feedback, i.e., clicks, likes, sharings, and a Multi-Task Fusion model (MTF) that combines the multi-task outputs into one final ranking score with respect to user satisfaction. There has not been much research on the fusion model while it has great impact on the final recommendation as the last crucial process of the ranking. To optimize long-term user satisfaction rather than obtain instant returns greedily, we formulate MTF task as Markov Decision Process (MDP) within a recommendation session and propose a Batch Reinforcement Learning (RL) based Multi-Task Fusion framework (BatchRL-MTF) that includes a Batch RL framework and an online exploration. The former exploits Batch RL to learn an optimal recommendation policy from the fixed batch data offline for long-term user satisfaction, while the latter explores potential high-value actions online to break through the local optimal dilemma. With a comprehensive investigation on user behaviors, we model the user satisfaction reward with subtle heuristics from two aspects of user stickiness and user activeness. Finally, we conduct extensive experiments on a billion-sample level real-world dataset to show the effectiveness of our model. We propose a conservative offline policy estimator (Conservative-OPEstimator) to test our model offline. Furthermore, we take online experiments in a real recommendation environment to compare performance of different models. As one of few Batch RL researches applied in MTF task successfully, our model has also been deployed on a large-scale industrial short video platform, serving hundreds of millions of users.
Abstract:Network activities recognition has always been a significant component of intrusion detection. However, with the increasing network traffic flow and complexity of network behavior, it is becoming more and more difficult to identify the specific behavior quickly and accurately by user network monitoring software. It also requires the system security staff to pay close attention to the latest intrusion monitoring technology and methods. All of these greatly increase the difficulty and complexity of intrusion detection tasks. The application of machine learning methods based on supervised classification technology would help to liberate the network security staff from the heavy and boring tasks. A finetuned model would accurately recognize user behavior, which could provide persistent monitoring with a relative high accuracy and good adaptability. Finally, the results of network activities recognition by J48 and Na\"ive Bayes algorithms are introduced and evaluated.