Abstract:Motor imagery (MI) based brain-computer interfaces (BCIs) enable the direct control of external devices through the imagined movements of various body parts. Unlike previous systems that used fixed-length EEG trials for MI decoding, asynchronous BCIs aim to detect the user's MI without explicit triggers. They are challenging to implement, because the algorithm needs to first distinguish between resting-states and MI trials, and then classify the MI trials into the correct task, all without any triggers. This paper proposes a sliding window prescreening and classification (SWPC) approach for MI-based asynchronous BCIs, which consists of two modules: a prescreening module to screen MI trials out of the resting-state, and a classification module for MI classification. Both modules are trained with supervised learning followed by self-supervised learning, which refines the feature extractors. Within-subject and cross-subject asynchronous MI classifications on four different EEG datasets validated the effectiveness of SWPC, i.e., it always achieved the highest average classification accuracy, and outperformed the best state-of-the-art baseline on each dataset by about 2%.
Abstract:Facial affect analysis remains a challenging task with its setting transitioned from lab-controlled to in-the-wild situations. In this paper, we present novel frameworks to handle the two challenges in the 4th Affective Behavior Analysis In-The-Wild (ABAW) competition: i) Multi-Task-Learning (MTL) Challenge and ii) Learning from Synthetic Data (LSD) Challenge. For MTL challenge, we adopt the SMM-EmotionNet with a better ensemble strategy of feature vectors. For LSD challenge, we propose respective methods to combat the problems of single labels, imbalanced distribution, fine-tuning limitations, and choice of model architectures. Experimental results on the official validation sets from the competition demonstrated that our proposed approaches outperformed baselines by a large margin. The code is available at https://github.com/sylyoung/ABAW4-HUST-ANT.