Abstract:Forecasting faithful trajectories of multivariate time series from practical scopes is essential for reasonable decision-making. Recent methods majorly tailor generative conditional diffusion models to estimate the target temporal predictive distribution. However, it remains an obstacle to enhance the exploitation efficiency of given implicit temporal predictive information to bolster conditional diffusion learning. To this end, we propose a generic channel-aware Contrastive Conditional Diffusion model entitled CCDM to achieve desirable Multivariate probabilistic forecasting, obviating the need for curated temporal conditioning inductive biases. In detail, we first design a channel-centric conditional denoising network to manage intra-variate variations and cross-variate correlations, which can lead to scalability on diverse prediction horizons and channel numbers. Then, we devise an ad-hoc denoising-based temporal contrastive learning to explicitly amplify the predictive mutual information between past observations and future forecasts. It can coherently complement naive step-wise denoising diffusion training and improve the forecasting accuracy and generality on unknown test time series. Besides, we offer theoretic insights on the benefits of such auxiliary contrastive training refinement from both neural mutual information and temporal distribution generalization aspects. The proposed CCDM can exhibit superior forecasting capability compared to current state-of-the-art diffusion forecasters over a comprehensive benchmark, with best MSE and CRPS outcomes on $66.67\%$ and $83.33\%$ cases. Our code is publicly available at https://github.com/LSY-Cython/CCDM.
Abstract:This paper aims to address the challenge of sparse and missing data in recommendation systems, a significant hurdle in the age of big data. Traditional imputation methods struggle to capture complex relationships within the data. We propose a novel approach that fine-tune Large Language Model (LLM) and use it impute missing data for recommendation systems. LLM which is trained on vast amounts of text, is able to understand complex relationship among data and intelligently fill in missing information. This enriched data is then used by the recommendation system to generate more accurate and personalized suggestions, ultimately enhancing the user experience. We evaluate our LLM-based imputation method across various tasks within the recommendation system domain, including single classification, multi-classification, and regression compared to traditional data imputation methods. By demonstrating the superiority of LLM imputation over traditional methods, we establish its potential for improving recommendation system performance.
Abstract:This paper presents a novel approach to enhance image-to-image generation by leveraging the multimodal capabilities of the Large Language and Vision Assistant (LLaVA). We propose a framework where LLaVA analyzes input images and generates textual descriptions, hereinafter LLaVA-generated prompts. These prompts, along with the original image, are fed into the image-to-image generation pipeline. This enriched representation guides the generation process towards outputs that exhibit a stronger resemblance to the input image. Extensive experiments demonstrate the effectiveness of LLaVA-generated prompts in promoting image similarity. We observe a significant improvement in the visual coherence between the generated and input images compared to traditional methods. Future work will explore fine-tuning LLaVA prompts for increased control over the creative process. By providing more specific details within the prompts, we aim to achieve a delicate balance between faithfulness to the original image and artistic expression in the generated outputs.
Abstract:This paper presents a novel contribution to the field of regional style transfer. Existing methods often suffer from the drawback of applying style homogeneously across the entire image, leading to stylistic inconsistencies or foreground object twisted when applied to image with foreground elements such as person figures. To address this limitation, we propose a new approach that leverages a segmentation network to precisely isolate foreground objects within the input image. Subsequently, style transfer is applied exclusively to the background region. The isolated foreground objects are then carefully reintegrated into the style-transferred background. To enhance the visual coherence between foreground and background, a color transfer step is employed on the foreground elements prior to their rein-corporation. Finally, we utilize feathering techniques to achieve a seamless amalgamation of foreground and background, resulting in a visually unified and aesthetically pleasing final composition. Extensive evaluations demonstrate that our proposed approach yields significantly more natural stylistic transformations compared to conventional methods.
Abstract:Due to the vast electric vehicle (EV) penetration to distribution grid, charging load forecasting is essential to promote charging station operation and demand-side management.However, the stochastic charging behaviors and associated exogenous factors render future charging load patterns quite volatile and hard to predict. Accordingly, we devise a novel Diffusion model termed DiffPLF for Probabilistic Load Forecasting of EV charging, which can explicitly approximate the predictive load distribution conditioned on historical data and related covariates. Specifically, we leverage a denoising diffusion model, which can progressively convert the Gaussian prior to real time-series data by learning a reversal of the diffusion process. Besides, we couple such diffusion model with a cross-attention-based conditioning mechanism to execute conditional generation for possible charging demand profiles. We also propose a task-informed fine-tuning technique to better adapt DiffPLF to the probabilistic time-series forecasting task and acquire more accurate and reliable predicted intervals. Finally, we conduct multiple experiments to validate the superiority of DiffPLF to predict complex temporal patterns of erratic charging load and carry out controllable generation based on certain covariate. Results demonstrate that we can attain a notable rise of 39.58% and 49.87% on MAE and CRPS respectively compared to the conventional method.
Abstract:Existing open-vocabulary image segmentation methods require a fine-tuning step on mask annotations and/or image-text datasets. Mask labels are labor-intensive, which limits the number of categories in segmentation datasets. As a result, the open-vocabulary capacity of pre-trained VLMs is severely reduced after fine-tuning. However, without fine-tuning, VLMs trained under weak image-text supervision tend to make suboptimal mask predictions when there are text queries referring to non-existing concepts in the image. To alleviate these issues, we introduce a novel recurrent framework that progressively filters out irrelevant texts and enhances mask quality without training efforts. The recurrent unit is a two-stage segmenter built upon a VLM with frozen weights. Thus, our model retains the VLM's broad vocabulary space and strengthens its segmentation capability. Experimental results show that our method outperforms not only the training-free counterparts, but also those fine-tuned with millions of additional data samples, and sets new state-of-the-art records for both zero-shot semantic and referring image segmentation tasks. Specifically, we improve the current record by 28.8, 16.0, and 6.9 mIoU on Pascal VOC, COCO Object, and Pascal Context.
Abstract:Foundation models, such as Large Language Models (LLMs), can respond to a wide range of format-free queries without any task-specific data collection or model training, creating various research and application opportunities for the modeling and operation of large-scale power systems. In this paper, we outline how such large foundation model such as GPT-4 are developed, and discuss how they can be leveraged in challenging power and energy system tasks. We first investigate the potential of existing foundation models by validating their performance on four representative tasks across power system domains, including the optimal power flow (OPF), electric vehicle (EV) scheduling, knowledge retrieval for power engineering technical reports, and situation awareness. Our results indicate strong capabilities of such foundation models on boosting the efficiency and reliability of power system operational pipelines. We also provide suggestions and projections on future deployment of foundation models in power system applications.
Abstract:Facial affect analysis remains a challenging task with its setting transitioned from lab-controlled to in-the-wild situations. In this paper, we present novel frameworks to handle the two challenges in the 4th Affective Behavior Analysis In-The-Wild (ABAW) competition: i) Multi-Task-Learning (MTL) Challenge and ii) Learning from Synthetic Data (LSD) Challenge. For MTL challenge, we adopt the SMM-EmotionNet with a better ensemble strategy of feature vectors. For LSD challenge, we propose respective methods to combat the problems of single labels, imbalanced distribution, fine-tuning limitations, and choice of model architectures. Experimental results on the official validation sets from the competition demonstrated that our proposed approaches outperformed baselines by a large margin. The code is available at https://github.com/sylyoung/ABAW4-HUST-ANT.
Abstract:Instance segmentation models today are very accurate when trained on large annotated datasets, but collecting mask annotations at scale is prohibitively expensive. We address the partially supervised instance segmentation problem in which one can train on (significantly cheaper) bounding boxes for all categories but use masks only for a subset of categories. In this work, we focus on a popular family of models which apply differentiable cropping to a feature map and predict a mask based on the resulting crop. Within this family, we show that the architecture of the mask-head plays a surprisingly important role in generalization to classes for which we do not observe masks during training. While many architectures perform similarly when trained in fully supervised mode, we show that they often generalize to novel classes in dramatically different ways. We call this phenomenon the strong mask generalization effect, which we exploit by replacing the typical mask-head of 2-4 layers with significantly deeper off-the-shelf architectures (e.g. ResNet, Hourglass models). We also show that the choice of mask-head architecture alone can lead to SOTA results on the partially supervised COCO benchmark without the need of specialty modules or losses proposed by prior literature. Finally, we demonstrate that our effect is general, holding across underlying detection methodologies, (e.g. both anchor-based or anchor free or no detector at all) and across different backbone networks. Code and pre-trained models are available at https://git.io/deepmac.
Abstract:We conduct an empirical study of unsupervised neural machine translation (NMT) for truly low resource languages, exploring the case when both parallel training data and compute resource are lacking, reflecting the reality of most of the world's languages and the researchers working on these languages. We propose a simple and scalable method to improve unsupervised NMT, showing how adding comparable data mined using a bilingual dictionary along with modest additional compute resource to train the model can significantly improve its performance. We also demonstrate how the use of the dictionary to code-switch monolingual data to create more comparable data can further improve performance. With this weak supervision, our best method achieves BLEU scores that improve over supervised results for English$\rightarrow$Gujarati (+18.88), English$\rightarrow$Kazakh (+5.84), and English$\rightarrow$Somali (+1.16), showing the promise of weakly-supervised NMT for many low resource languages with modest compute resource in the world. To the best of our knowledge, our work is the first to quantitatively showcase the impact of different modest compute resource in low resource NMT.