Abstract:An electroencephalogram (EEG) based brain-computer interface (BCI) enables direct communication between the brain and external devices. However, EEG-based BCIs face at least three major challenges in real-world applications: data scarcity and individual differences, adversarial vulnerability, and data privacy. While previous studies have addressed one or two of these issues, simultaneous accommodation of all three challenges remains challenging and unexplored. This paper fills this gap, by proposing an Augmented Robustness Ensemble (ARE) algorithm and integrating it into three privacy protection scenarios (centralized source-free transfer, federated source-free transfer, and source data perturbation), achieving simultaneously accurate decoding, adversarial robustness, and privacy protection of EEG-based BCIs. Experiments on three public EEG datasets demonstrated that our proposed approach outperformed over 10 classic and state-of-the-art approaches in both accuracy and robustness in all three privacy-preserving scenarios, even outperforming state-of-the-art transfer learning approaches that do not consider privacy protection at all. This is the first time that three major challenges in EEG-based BCIs can be addressed simultaneously, significantly improving the practicalness of EEG decoding in real-world BCIs.
Abstract:Training an accurate classifier for EEG-based brain-computer interface (BCI) requires EEG data from a large number of users, whereas protecting their data privacy is a critical consideration. Federated learning (FL) is a promising solution to this challenge. This paper proposes Federated classification with local Batch-specific batch normalization and Sharpness-aware minimization (FedBS) for privacy protection in EEG-based motor imagery (MI) classification. FedBS utilizes local batch-specific batch normalization to reduce data discrepancies among different clients, and sharpness-aware minimization optimizer in local training to improve model generalization. Experiments on three public MI datasets using three popular deep learning models demonstrated that FedBS outperformed six state-of-the-art FL approaches. Remarkably, it also outperformed centralized training, which does not consider privacy protection at all. In summary, FedBS protects user EEG data privacy, enabling multiple BCI users to participate in large-scale machine learning model training, which in turn improves the BCI decoding accuracy.
Abstract:A brain-computer interface (BCI) enables direct communication between the brain and an external device. Electroencephalogram (EEG) is the preferred input signal in non-invasive BCIs, due to its convenience and low cost. EEG-based BCIs have been successfully used in many applications, such as neurological rehabilitation, text input, games, and so on. However, EEG signals inherently carry rich personal information, necessitating privacy protection. This paper demonstrates that multiple types of private information (user identity, gender, and BCI-experience) can be easily inferred from EEG data, imposing a serious privacy threat to BCIs. To address this issue, we design perturbations to convert the original EEG data into privacy-protected EEG data, which conceal the private information while maintaining the primary BCI task performance. Experimental results demonstrated that the privacy-protected EEG data can significantly reduce the classification accuracy of user identity, gender and BCI-experience, but almost do not affect at all the classification accuracy of the primary BCI task, enabling user privacy protection in EEG-based BCIs.