Abstract:Large Language Models (LLMs) are increasingly employed in various question-answering tasks. However, recent studies showcase that LLMs are susceptible to persuasion and could adopt counterfactual beliefs. We present a systematic evaluation of LLM susceptibility to persuasion under the Source--Message--Channel--Receiver (SMCR) communication framework. Across five mainstream Large Language Models (LLMs) and three domains (factual knowledge, medical QA, and social bias), we analyze how different persuasive strategies influence belief stability over multiple interaction turns. We further examine whether meta-cognition prompting (i.e., eliciting self-reported confidence) affects resistance to persuasion. Results show that smaller models exhibit extreme compliance, with over 80% of belief changes occurring at the first persuasive turn (average end turn of 1.1--1.4). Contrary to expectations, meta-cognition prompting increases vulnerability by accelerating belief erosion rather than enhancing robustness. Finally, we evaluate adversarial fine-tuning as a defense. While GPT-4o-mini achieves near-complete robustness (98.6%) and Mistral~7B improves substantially (35.7% $\rightarrow$ 79.3%), Llama models remain highly susceptible (<14%) even when fine-tuned on their own failure cases. Together, these findings highlight substantial model-dependent limits of current robustness interventions and offer guidance for developing more trustworthy LLMs.
Abstract:We present XChoice, an explainable framework for evaluating AI-human alignment in constrained decision making. Moving beyond outcome agreement such as accuracy and F1 score, XChoice fits a mechanism-based decision model to human data and LLM-generated decisions, recovering interpretable parameters that capture the relative importance of decision factors, constraint sensitivity, and implied trade-offs. Alignment is assessed by comparing these parameter vectors across models, options, and subgroups. We demonstrate XChoice on Americans' daily time allocation using the American Time Use Survey (ATUS) as human ground truth, revealing heterogeneous alignment across models and activities and salient misalignment concentrated in Black and married groups. We further validate robustness of XChoice via an invariance analysis and evaluate targeted mitigation with a retrieval augmented generation (RAG) intervention. Overall, XChoice provides mechanism-based metrics that diagnose misalignment and support informed improvements beyond surface outcome matching.
Abstract:Personalized AI agents rely on access to a user's digital footprint, which often includes sensitive data from private emails, chats and purchase histories. Yet this access creates a fundamental societal and privacy risk: systems lacking social-context awareness can unintentionally expose user secrets, threatening digital well-being. We introduce PrivacyBench, a benchmark with socially grounded datasets containing embedded secrets and a multi-turn conversational evaluation to measure secret preservation. Testing Retrieval-Augmented Generation (RAG) assistants reveals that they leak secrets in up to 26.56% of interactions. A privacy-aware prompt lowers leakage to 5.12%, yet this measure offers only partial mitigation. The retrieval mechanism continues to access sensitive data indiscriminately, which shifts the entire burden of privacy preservation onto the generator. This creates a single point of failure, rendering current architectures unsafe for wide-scale deployment. Our findings underscore the urgent need for structural, privacy-by-design safeguards to ensure an ethical and inclusive web for everyone.
Abstract:The expansion of short-term rental platforms, such as Airbnb, has significantly disrupted local housing markets, often leading to increased rental prices and housing affordability issues. Accurately forecasting regional Airbnb market trends can thus offer critical insights for policymakers and urban planners aiming to mitigate these impacts. This study proposes a novel time-series forecasting framework to predict three key Airbnb indicators -- Revenue, Reservation Days, and Number of Reservations -- at the regional level. Using a sliding-window approach, the model forecasts trends 1 to 3 months ahead. Unlike prior studies that focus on individual listings at fixed time points, our approach constructs regional representations by integrating listing features with external contextual factors such as urban accessibility and human mobility. We convert structured tabular data into prompt-based inputs for a Large Language Model (LLM), producing comprehensive regional embeddings. These embeddings are then fed into advanced time-series models (RNN, LSTM, Transformer) to better capture complex spatio-temporal dynamics. Experiments on Seoul's Airbnb dataset show that our method reduces both average RMSE and MAE by approximately 48% compared to conventional baselines, including traditional statistical and machine learning models. Our framework not only improves forecasting accuracy but also offers practical insights for detecting oversupplied regions and supporting data-driven urban policy decisions.




Abstract:A reliable short-term transportation demand prediction supports the authorities in improving the capability of systems by optimizing schedules, adjusting fleet sizes, and generating new transit networks. A handful of research efforts incorporate one or a few areal features while learning spatio-temporal correlation, to capture similar demand patterns between similar areas. However, urban characteristics are polymorphic, and they need to be understood by multiple areal features such as land use, sociodemographics, and place-of-interest (POI) distribution. In this paper, we propose a novel spatio-temporal multi-feature-aware graph convolutional recurrent network (ST-MFGCRN) that fuses multiple areal features during spatio-temproal understanding. Inside ST-MFGCRN, we devise sentinel attention to calculate the areal similarity matrix by allowing each area to take partial attention if the feature is not useful. We evaluate the proposed model on two real-world transportation datasets, one with our constructed BusDJ dataset and one with benchmark TaxiBJ. Results show that our model outperforms the state-of-the-art baselines up to 7\% on BusDJ and 8\% on TaxiBJ dataset.
Abstract:For traffic prediction in transportation services such as car-sharing and ride-hailing, mid-term road traffic prediction (within a few hours) is considered essential. However, the existing road-level traffic prediction has mainly studied how significantly micro traffic events propagate to the adjacent roads in terms of short-term prediction. On the other hand, recent attempts have been made to incorporate regional knowledge such as POIs, road characteristics, and real-time social events to help traffic prediction. However, these studies lack in understandings of different modalities of road-level and region-level spatio-temporal correlations and how to combine such knowledge. This paper proposes a novel method that embeds real-time region-level knowledge using POIs, satellite images, and real-time LTE access traces via a regional spatio-temporal module that consists of dynamic convolution and temporal attention, and conducts bipartite spatial transform attention to convert into road-level knowledge. Then the model ingests this embedded knowledge into a road-level attention-based prediction model. Experimental results on real-world road traffic prediction show that our model outperforms the baselines.




Abstract:Beliefs serve as the foundation for human cognition and decision-making. They guide individuals in deriving meaning from their lives, shaping their behaviors, and forming social connections. Therefore, a model that encapsulates beliefs and their interrelationships is crucial for quantitatively studying the influence of beliefs on our actions. Despite its importance, research on the interplay between human beliefs has often been limited to a small set of beliefs pertaining to specific issues, with a heavy reliance on surveys or experiments. Here, we propose a method for extracting nuanced relations between thousands of beliefs by leveraging large-scale user participation data from an online debate platform and mapping these beliefs to an embedding space using a fine-tuned large language model (LLM). This belief embedding space effectively encapsulates the interconnectedness of diverse beliefs as well as polarization across various social issues. We discover that the positions within this belief space predict new beliefs of individuals. Furthermore, we find that the relative distance between one's existing beliefs and new beliefs can serve as a quantitative estimate of cognitive dissonance, allowing us to predict new beliefs. Our study highlights how modern LLMs, when combined with collective online records of human beliefs, can offer insights into the fundamental principles that govern human belief formation and decision-making processes.




Abstract:Knowledge graphs play a pivotal role in various applications, such as question-answering and fact-checking. Abstract Meaning Representation (AMR) represents text as knowledge graphs. Evaluating the quality of these graphs involves matching them structurally to each other and semantically to the source text. Existing AMR metrics are inefficient and struggle to capture semantic similarity. We also lack a systematic evaluation benchmark for assessing structural similarity between AMR graphs. To overcome these limitations, we introduce a novel AMR similarity metric, rematch, alongside a new evaluation for structural similarity called RARE. Among state-of-the-art metrics, rematch ranks second in structural similarity; and first in semantic similarity by 1--5 percentage points on the STS-B and SICK-R benchmarks. Rematch is also five times faster than the next most efficient metric.




Abstract:As AI becomes more integral in our lives, the need for transparency and responsibility grows. While natural language explanations (NLEs) are vital for clarifying the reasoning behind AI decisions, evaluating them through human judgments is complex and resource-intensive due to subjectivity and the need for fine-grained ratings. This study explores the alignment between ChatGPT and human assessments across multiple scales (i.e., binary, ternary, and 7-Likert scale). We sample 300 data instances from three NLE datasets and collect 900 human annotations for both informativeness and clarity scores as the text quality measurement. We further conduct paired comparison experiments under different ranges of subjectivity scores, where the baseline comes from 8,346 human annotations. Our results show that ChatGPT aligns better with humans in more coarse-grained scales. Also, paired comparisons and dynamic prompting (i.e., providing semantically similar examples in the prompt) improve the alignment. This research advances our understanding of large language models' capabilities to assess the text explanation quality in different configurations for responsible AI development.




Abstract:We investigate the performance of LLM-based zero-shot stance detection on tweets. Using FlanT5-XXL, an instruction-tuned open-source LLM, with the SemEval 2016 Tasks 6A, 6B, and P-Stance datasets, we study the performance and its variations under different prompts and decoding strategies, as well as the potential biases of the model. We show that the zero-shot approach can match or outperform state-of-the-art benchmarks, including fine-tuned models. We provide various insights into its performance including the sensitivity to instructions and prompts, the decoding strategies, the perplexity of the prompts, and to negations and oppositions present in prompts. Finally, we ensure that the LLM has not been trained on test datasets, and identify a positivity bias which may partially explain the performance differences across decoding strategie