The robustness of AI-content detection models against cultivated attacks (e.g., paraphrasing or word switching) remains a significant concern. This study proposes a novel token-ensemble generation strategy to challenge the robustness of current AI-content detection approaches. We explore the ensemble attack strategy by completing the prompt with the next token generated from random candidate LLMs. We find the token-ensemble approach significantly drops the performance of AI-content detection models (The code and test sets will be released). Our findings reveal that token-ensemble generation poses a vital challenge to current detection models and underlines the need for advancing detection technologies to counter sophisticated adversarial strategies.