Abstract:The rapid growth of user-generated content (UGC) videos has produced an urgent need for effective video quality assessment (VQA) algorithms to monitor video quality and guide optimization and recommendation procedures. However, current VQA models generally only give an overall rating for a UGC video, which lacks fine-grained labels for serving video processing and recommendation applications. To address the challenges and promote the development of UGC videos, we establish the first large-scale Fine-grained Video quality assessment Database, termed FineVD, which comprises 6104 UGC videos with fine-grained quality scores and descriptions across multiple dimensions. Based on this database, we propose a Fine-grained Video Quality assessment (FineVQ) model to learn the fine-grained quality of UGC videos, with the capabilities of quality rating, quality scoring, and quality attribution. Extensive experimental results demonstrate that our proposed FineVQ can produce fine-grained video-quality results and achieve state-of-the-art performance on FineVD and other commonly used UGC-VQA datasets. Both Both FineVD and FineVQ will be made publicly available.
Abstract:Automatic video polyp segmentation plays a critical role in gastrointestinal cancer screening, but the cost of frameby-frame annotations is prohibitively high. While sparse-frame supervised methods have reduced this burden proportionately, the cost remains overwhelming for long-duration videos and large-scale datasets. In this paper, we, for the first time, reduce the annotation cost to just a single frame per polyp video, regardless of the video's length. To this end, we introduce a new task, First-Frame Supervised Video Polyp Segmentation (FSVPS), and propose a novel Propagative and Semantic Dual-Teacher Network (PSDNet). Specifically, PSDNet adopts a teacher-student framework but employs two distinct types of teachers: the propagative teacher and the semantic teacher. The propagative teacher is a universal object tracker that propagates the first-frame annotation to subsequent frames as pseudo labels. However, tracking errors may accumulate over time, gradually degrading the pseudo labels and misguiding the student model. To address this, we introduce the semantic teacher, an exponential moving average of the student model, which produces more stable and time-invariant pseudo labels. PSDNet merges the pseudo labels from both teachers using a carefully-designed back-propagation strategy. This strategy assesses the quality of the pseudo labels by tracking them backward to the first frame. High-quality pseudo labels are more likely to spatially align with the firstframe annotation after this backward tracking, ensuring more accurate teacher-to-student knowledge transfer and improved segmentation performance. Benchmarking on SUN-SEG, the largest VPS dataset, demonstrates the competitive performance of PSDNet compared to fully-supervised approaches, and its superiority over sparse-frame supervised state-of-the-arts with a minimum improvement of 4.5% in Dice score.
Abstract:Artificial intelligence generative models exhibit remarkable capabilities in content creation, particularly in face image generation, customization, and restoration. However, current AI-generated faces (AIGFs) often fall short of human preferences due to unique distortions, unrealistic details, and unexpected identity shifts, underscoring the need for a comprehensive quality evaluation framework for AIGFs. To address this need, we introduce FaceQ, a large-scale, comprehensive database of AI-generated Face images with fine-grained Quality annotations reflecting human preferences. The FaceQ database comprises 12,255 images generated by 29 models across three tasks: (1) face generation, (2) face customization, and (3) face restoration. It includes 32,742 mean opinion scores (MOSs) from 180 annotators, assessed across multiple dimensions: quality, authenticity, identity (ID) fidelity, and text-image correspondence. Using the FaceQ database, we establish F-Bench, a benchmark for comparing and evaluating face generation, customization, and restoration models, highlighting strengths and weaknesses across various prompts and evaluation dimensions. Additionally, we assess the performance of existing image quality assessment (IQA), face quality assessment (FQA), AI-generated content image quality assessment (AIGCIQA), and preference evaluation metrics, manifesting that these standard metrics are relatively ineffective in evaluating authenticity, ID fidelity, and text-image correspondence. The FaceQ database will be publicly available upon publication.
Abstract:Neural Radiance Field (NeRF)-based volumetric video has revolutionized visual media by delivering photorealistic Free-Viewpoint Video (FVV) experiences that provide audiences with unprecedented immersion and interactivity. However, the substantial data volumes pose significant challenges for storage and transmission. Existing solutions typically optimize NeRF representation and compression independently or focus on a single fixed rate-distortion (RD) tradeoff. In this paper, we propose VRVVC, a novel end-to-end joint optimization variable-rate framework for volumetric video compression that achieves variable bitrates using a single model while maintaining superior RD performance. Specifically, VRVVC introduces a compact tri-plane implicit residual representation for inter-frame modeling of long-duration dynamic scenes, effectively reducing temporal redundancy. We further propose a variable-rate residual representation compression scheme that leverages a learnable quantization and a tiny MLP-based entropy model. This approach enables variable bitrates through the utilization of predefined Lagrange multipliers to manage the quantization error of all latent representations. Finally, we present an end-to-end progressive training strategy combined with a multi-rate-distortion loss function to optimize the entire framework. Extensive experiments demonstrate that VRVVC achieves a wide range of variable bitrates within a single model and surpasses the RD performance of existing methods across various datasets.
Abstract:Large Language Model (LLM) is changing the software development paradigm and has gained huge attention from both academia and industry. Researchers and developers collaboratively explore how to leverage the powerful problem-solving ability of LLMs for specific domain tasks. Due to the wide usage of LLM-based applications, e.g., ChatGPT, multiple works have been proposed to ensure the security of LLM systems. However, a comprehensive understanding of the entire processes of LLM system construction (the LLM supply chain) is crucial but relevant works are limited. More importantly, the security issues hidden in the LLM SC which could highly impact the reliable usage of LLMs are lack of exploration. Existing works mainly focus on assuring the quality of LLM from the model level, security assurance for the entire LLM SC is ignored. In this work, we take the first step to discuss the potential security risks in each component as well as the integration between components of LLM SC. We summarize 12 security-related risks and provide promising guidance to help build safer LLM systems. We hope our work can facilitate the evolution of artificial general intelligence with secure LLM ecosystems.
Abstract:With the rapid development of Large language models (LLMs), understanding the capabilities of LLMs in identifying unsafe content has become increasingly important. While previous works have introduced several benchmarks to evaluate the safety risk of LLMs, the community still has a limited understanding of current LLMs' capability to recognize illegal and unsafe content in Chinese contexts. In this work, we present a Chinese safety benchmark (ChineseSafe) to facilitate research on the content safety of large language models. To align with the regulations for Chinese Internet content moderation, our ChineseSafe contains 205,034 examples across 4 classes and 10 sub-classes of safety issues. For Chinese contexts, we add several special types of illegal content: political sensitivity, pornography, and variant/homophonic words. Moreover, we employ two methods to evaluate the legal risks of popular LLMs, including open-sourced models and APIs. The results reveal that many LLMs exhibit vulnerability to certain types of safety issues, leading to legal risks in China. Our work provides a guideline for developers and researchers to facilitate the safety of LLMs. Our results are also available at https://huggingface.co/spaces/SUSTech/ChineseSafe-Benchmark.
Abstract:Over-parameterized models are typically vulnerable to membership inference attacks, which aim to determine whether a specific sample is included in the training of a given model. Previous Weight regularizations (e.g., L1 regularization) typically impose uniform penalties on all parameters, leading to a suboptimal tradeoff between model utility and privacy. In this work, we first show that only a small fraction of parameters substantially impact the privacy risk. In light of this, we propose Privacy-aware Sparsity Tuning (PAST), a simple fix to the L1 Regularization, by employing adaptive penalties to different parameters. Our key idea behind PAST is to promote sparsity in parameters that significantly contribute to privacy leakage. In particular, we construct the adaptive weight for each parameter based on its privacy sensitivity, i.e., the gradient of the loss gap with respect to the parameter. Using PAST, the network shrinks the loss gap between members and non-members, leading to strong resistance to privacy attacks. Extensive experiments demonstrate the superiority of PAST, achieving a state-of-the-art balance in the privacy-utility trade-off.
Abstract:Diffusion models have emerged as frontrunners in text-to-image generation for their impressive capabilities. Nonetheless, their fixed image resolution during training often leads to challenges in high-resolution image generation, such as semantic inaccuracies and object replication. This paper introduces MegaFusion, a novel approach that extends existing diffusion-based text-to-image generation models towards efficient higher-resolution generation without additional fine-tuning or extra adaptation. Specifically, we employ an innovative truncate and relay strategy to bridge the denoising processes across different resolutions, allowing for high-resolution image generation in a coarse-to-fine manner. Moreover, by integrating dilated convolutions and noise re-scheduling, we further adapt the model's priors for higher resolution. The versatility and efficacy of MegaFusion make it universally applicable to both latent-space and pixel-space diffusion models, along with other derivative models. Extensive experiments confirm that MegaFusion significantly boosts the capability of existing models to produce images of megapixels and various aspect ratios, while only requiring about 40% of the original computational cost.
Abstract:Performance evaluation plays a crucial role in the development life cycle of large language models (LLMs). It estimates the model's capability, elucidates behavior characteristics, and facilitates the identification of potential issues and limitations, thereby guiding further improvement. Given that LLMs' diverse task-handling abilities stem from large volumes of training data, a comprehensive evaluation also necessitates abundant, well-annotated, and representative test data to assess LLM performance across various downstream tasks. However, the demand for high-quality test data often entails substantial time, computational resources, and manual efforts, sometimes causing the evaluation to be inefficient or impractical. To address these challenges, researchers propose active testing, which estimates the overall performance by selecting a subset of test data. Nevertheless, the existing active testing methods tend to be inefficient, even inapplicable, given the unique new challenges of LLMs (e.g., diverse task types, increased model complexity, and unavailability of training data). To mitigate such limitations and expedite the development cycle of LLMs, in this work, we introduce AcTracer, an active testing framework tailored for LLMs that strategically selects a small subset of test data to achieve a nearly optimal performance estimation for LLMs. AcTracer utilizes both internal and external information from LLMs to guide the test sampling process, reducing variance through a multi-stage pool-based active selection. Our experiment results demonstrate that AcTracer achieves state-of-the-art performance compared to existing methods across various tasks, with up to 38.83% improvement over previous SOTA.
Abstract:Volumetric video based on Neural Radiance Field (NeRF) holds vast potential for various 3D applications, but its substantial data volume poses significant challenges for compression and transmission. Current NeRF compression lacks the flexibility to adjust video quality and bitrate within a single model for various network and device capacities. To address these issues, we propose HPC, a novel hierarchical progressive volumetric video coding framework achieving variable bitrate using a single model. Specifically, HPC introduces a hierarchical representation with a multi-resolution residual radiance field to reduce temporal redundancy in long-duration sequences while simultaneously generating various levels of detail. Then, we propose an end-to-end progressive learning approach with a multi-rate-distortion loss function to jointly optimize both hierarchical representation and compression. Our HPC trained only once can realize multiple compression levels, while the current methods need to train multiple fixed-bitrate models for different rate-distortion (RD) tradeoffs. Extensive experiments demonstrate that HPC achieves flexible quality levels with variable bitrate by a single model and exhibits competitive RD performance, even outperforming fixed-bitrate models across various datasets.