Abstract:With the rapid development of Large language models (LLMs), understanding the capabilities of LLMs in identifying unsafe content has become increasingly important. While previous works have introduced several benchmarks to evaluate the safety risk of LLMs, the community still has a limited understanding of current LLMs' capability to recognize illegal and unsafe content in Chinese contexts. In this work, we present a Chinese safety benchmark (ChineseSafe) to facilitate research on the content safety of large language models. To align with the regulations for Chinese Internet content moderation, our ChineseSafe contains 205,034 examples across 4 classes and 10 sub-classes of safety issues. For Chinese contexts, we add several special types of illegal content: political sensitivity, pornography, and variant/homophonic words. Moreover, we employ two methods to evaluate the legal risks of popular LLMs, including open-sourced models and APIs. The results reveal that many LLMs exhibit vulnerability to certain types of safety issues, leading to legal risks in China. Our work provides a guideline for developers and researchers to facilitate the safety of LLMs. Our results are also available at https://huggingface.co/spaces/SUSTech/ChineseSafe-Benchmark.
Abstract:In disentangled representation learning, the goal is to achieve a compact representation that consists of all interpretable generative factors in the observational data. Learning disentangled representations for graphs becomes increasingly important as graph data rapidly grows. Existing approaches often rely on Variational Auto-Encoder (VAE) or its causal structure learning-based refinement, which suffer from sub-optimality in VAEs due to the independence factor assumption and unavailability of concept labels, respectively. In this paper, we propose an unsupervised solution, dubbed concept-free causal disentanglement, built on a theoretically provable tight upper bound approximating the optimal factor. This results in an SCM-like causal structure modeling that directly learns concept structures from data. Based on this idea, we propose Concept-free Causal VGAE (CCVGAE) by incorporating a novel causal disentanglement layer into Variational Graph Auto-Encoder. Furthermore, we prove concept consistency under our concept-free causal disentanglement framework, hence employing it to enhance the meta-learning framework, called concept-free causal Meta-Graph (CC-Meta-Graph). We conduct extensive experiments to demonstrate the superiority of the proposed models: CCVGAE and CC-Meta-Graph, reaching up to $29\%$ and $11\%$ absolute improvements over baselines in terms of AUC, respectively.
Abstract:Spatiotemporal traffic data imputation (STDI), estimating the missing data from partially observed traffic data, is an inevitable and challenging task in data-driven intelligent transportation systems (ITS). Due to traffic data's multidimensional and spatiotemporal properties, we treat the missing data imputation as a tensor completion problem. Many studies have been on STDI based on tensor decomposition in the past decade. However, how to use spatiotemporal correlations and core tensor sparsity to improve the imputation performance still needs to be solved. This paper reshapes a 3rd/4th order Hankel tensor and proposes an innovative manifold regularized Tucker decomposition (ManiRTD) model for STDI. Expressly, we represent the sensory traffic state data as the 3rd/4th tensors by introducing Multiway Delay Embedding Transforms. Then, ManiRTD improves the sparsity of the Tucker core using a sparse regularization term and employs manifold regularization and temporal constraint terms of factor matrices to characterize the spatiotemporal correlations. Finally, we address the ManiRTD model through a block coordinate descent framework under alternating proximal gradient updating rules with convergence-guaranteed. Numerical experiments are conducted on real-world spatiotemporal traffic datasets (STDs). Our results demonstrate that the proposed model outperforms the other factorization approaches and reconstructs the STD more precisely under various missing scenarios.
Abstract:Intelligent reflecting surface (IRS) is an emerging technology for wireless communication composed of a large number of low-cost passive devices with reconfigurable parameters, which can reflect signals with a certain phase shift and is capable of building programmable communication environment. In this paper, to avoid the high hardware cost and energy consumption in spatial modulation (SM), an IRS-aided hybrid secure SM (SSM) system with a hybrid precoder is proposed. To improve the security performance, we formulate an optimization problem to maximize the secrecy rate (SR) by jointly optimizing the beamforming at IRS and hybrid precoding at the transmitter. Considering that the SR has no closed form expression, an approximate SR (ASR) expression is derived as the objective function. To improve the SR performance, three IRS beamforming methods, called IRS alternating direction method of multipliers (IRS-ADMM), IRS block coordinate ascend (IRS-BCA) and IRS semi-definite relaxation (IRS-SDR), are proposed. As for the hybrid precoding design, approximated secrecy rate-successive convex approximation (ASR-SCA) method and cut-off rate-gradient ascend (COR-GA) method are proposed. Simulation results demonstrate that the proposed IRS-SDR and IRS-ADMM beamformers harvest substantial SR performance gains over IRS-BCA. Particularly, the proposed IRS-ADMM and IRS-BCA are of low-complexity at the expense of a little performance loss compared with IRS-SDR. For hybrid precoding, the proposed ASR-SCA performs better than COR-GA in the high transmit power region.
Abstract:In a secure spatial modulation with a malicious full-duplex attacker, how to obtain the interference space or channel state information (CSI) is very important for Bob to cancel or reduce the interference from Mallory. In this paper, different from existing work with a perfect CSI, the covariance matrix of malicious interference (CMMI) from Mallory is estimated and is used to construct the null-space of interference (NSI). Finally, the receive beamformer at Bob is designed to remove the malicious interference using the NSI. To improve the estimation accuracy, a rank detector relying on Akaike information criterion (AIC) is derived. To achieve a high-precision CMMI estimation, two methods are proposed as follows: principal component analysis-eigenvalue decomposition (PCA-EVD), and joint diagonalization (JD). The proposed PCA-EVD is a rank deduction method whereas the JD method is a joint optimization method with improved performance in low signal to interference plus noise ratio (SINR) region at the expense of increased complexities. Simulation results show that the proposed PCA-EVD performs much better than the existing method like sample estimated covariance matrix (SCM) and EVD in terms of normalized mean square error (NMSE) and secrecy rate (SR). Additionally, the proposed JD method has an excellent NMSE performance better than PCA-EVD in the low SINR region (SINR < 0dB) while in the high SINR region PCA-EVD performs better than JD.