Abstract:To address the issues of the existing frustum-based methods' underutilization of image information in road three-dimensional object detection as well as the lack of research on agricultural scenes, we constructed an object detection dataset using an 80-line Light Detection And Ranging (LiDAR) and a camera in a complex tractor road scene and proposed a new network called FrustumFusionNets (FFNets). Initially, we utilize the results of image-based two-dimensional object detection to narrow down the search region in the three-dimensional space of the point cloud. Next, we introduce a Gaussian mask to enhance the point cloud information. Then, we extract the features from the frustum point cloud and the crop image using the point cloud feature extraction pipeline and the image feature extraction pipeline, respectively. Finally, we concatenate and fuse the data features from both modalities to achieve three-dimensional object detection. Experiments demonstrate that on the constructed test set of tractor road data, the FrustumFusionNetv2 achieves 82.28% and 95.68% accuracy in the three-dimensional object detection of the two main road objects, cars and people, respectively. This performance is 1.83% and 2.33% better than the original model. It offers a hybrid fusion-based multi-object, high-precision, real-time three-dimensional object detection technique for unmanned agricultural machines in tractor road scenarios. On the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) Benchmark Suite validation set, the FrustumFusionNetv2 also demonstrates significant superiority in detecting road pedestrian objects compared with other frustum-based three-dimensional object detection methods.