Kyushu University
Abstract:Physical adversarial attacks in driving scenarios can expose critical vulnerabilities in visual perception models. However, developing such attacks remains challenging due to diverse real-world backgrounds and the requirement for maintaining visual naturality. Building upon this challenge, we reformulate physical adversarial attacks as a one-shot patch-generation problem. Our approach generates adversarial patches through a deep generative model that considers the specific scene context, enabling direct physical deployment in matching environments. The primary challenge lies in simultaneously achieving two objectives: generating adversarial patches that effectively mislead object detection systems while determining contextually appropriate placement within the scene. We propose MAGIC (Mastering Physical Adversarial Generation In Context), a novel framework powered by multi-modal LLM agents to address these challenges. MAGIC automatically understands scene context and orchestrates adversarial patch generation through the synergistic interaction of language and vision capabilities. MAGIC orchestrates three specialized LLM agents: The adv-patch generation agent (GAgent) masters the creation of deceptive patches through strategic prompt engineering for text-to-image models. The adv-patch deployment agent (DAgent) ensures contextual coherence by determining optimal placement strategies based on scene understanding. The self-examination agent (EAgent) completes this trilogy by providing critical oversight and iterative refinement of both processes. We validate our method on both digital and physical level, \ie, nuImage and manually captured real scenes, where both statistical and visual results prove that our MAGIC is powerful and effectively for attacking wide-used object detection systems.
Abstract:3D Gaussian splatting (3DGS) has demonstrated impressive 3D reconstruction performance with explicit scene representations. Given the widespread application of 3DGS in 3D reconstruction and generation tasks, there is an urgent need to protect the copyright of 3DGS assets. However, existing copyright protection techniques for 3DGS overlook the usability of 3D assets, posing challenges for practical deployment. Here we describe WaterGS, the first 3DGS watermarking framework that embeds 3D content in 3DGS itself without modifying any attributes of the vanilla 3DGS. To achieve this, we take a deep insight into spherical harmonics (SH) and devise an importance-graded SH coefficient encryption strategy to embed the hidden SH coefficients. Furthermore, we employ a convolutional autoencoder to establish a mapping between the original Gaussian primitives' opacity and the hidden Gaussian primitives' opacity. Extensive experiments indicate that WaterGS significantly outperforms existing 3D steganography techniques, with 5.31% higher scene fidelity and 3X faster rendering speed, while ensuring security, robustness, and user experience. Codes and data will be released at https://water-gs.github.io.
Abstract:Retrieval-Augmented Generation (RAG) is a pivotal technique for enhancing the capability of large language models (LLMs) and has demonstrated promising efficacy across a diverse spectrum of tasks. While LLM-driven RAG systems show superior performance, they face unique challenges in stability and reliability. Their complexity hinders developers' efforts to design, maintain, and optimize effective RAG systems. Therefore, it is crucial to understand how RAG's performance is impacted by its design. In this work, we conduct an early exploratory study toward a better understanding of the mechanism of RAG systems, covering three code datasets, three QA datasets, and two LLMs. We focus on four design factors: retrieval document type, retrieval recall, document selection, and prompt techniques. Our study uncovers how each factor impacts system correctness and confidence, providing valuable insights for developing an accurate and reliable RAG system. Based on these findings, we present nine actionable guidelines for detecting defects and optimizing the performance of RAG systems. We hope our early exploration can inspire further advancements in engineering, improving and maintaining LLM-driven intelligent software systems for greater efficiency and reliability.
Abstract:Deep learning has revolutionized computing in many real-world applications, arguably due to its remarkable performance and extreme convenience as an end-to-end solution. However, deep learning models can be costly to train and to use, especially for those large-scale models, making it necessary to optimize the original overly complicated models into smaller ones in scenarios with limited resources such as mobile applications or simply for resource saving. The key question in such model optimization is, how can we effectively identify and measure the redundancy in a deep learning model structure. While several common metrics exist in the popular model optimization techniques to measure the performance of models after optimization, they are not able to quantitatively inform the degree of remaining redundancy. To address the problem, we present a novel testing approach, i.e., RedTest, which proposes a novel testing metric called Model Structural Redundancy Score (MSRS) to quantitatively measure the degree of redundancy in a deep learning model structure. We first show that MSRS is effective in both revealing and assessing the redundancy issues in many state-of-the-art models, which urgently calls for model optimization. Then, we utilize MSRS to assist deep learning model developers in two practical application scenarios: 1) in Neural Architecture Search, we design a novel redundancy-aware algorithm to guide the search for the optimal model structure and demonstrate its effectiveness by comparing it to existing standard NAS practice; 2) in the pruning of large-scale pre-trained models, we prune the redundant layers of pre-trained models with the guidance of layer similarity to derive less redundant ones of much smaller size. Extensive experimental results demonstrate that removing such redundancy has a negligible effect on the model utility.
Abstract:Zero-shot voice conversion (VC) aims to transform the timbre of a source speaker into any previously unseen target speaker, while preserving the original linguistic content. Despite notable progress, attaining a degree of speaker similarity and naturalness on par with ground truth recordings continues to pose great challenge. In this paper, we propose CTEFM-VC, a zero-shot VC framework that leverages Content-aware Timbre Ensemble modeling and Flow Matching. Specifically, CTEFM-VC disentangles utterances into linguistic content and timbre representations, subsequently utilizing a conditional flow matching model and a vocoder to reconstruct the mel-spectrogram and waveform. To enhance its timbre modeling capability and the naturalness of generated speech, we propose a context-aware timbre ensemble modeling approach that adaptively integrates diverse speaker verification embeddings and enables the joint utilization of linguistic and timbre features through a cross-attention module. Experiments show that our CTEFM-VC system surpasses state-of-the-art VC methods in both speaker similarity and naturalness by at least 18.5% and 7.0%.
Abstract:Large Language Model (LLM) is changing the software development paradigm and has gained huge attention from both academia and industry. Researchers and developers collaboratively explore how to leverage the powerful problem-solving ability of LLMs for specific domain tasks. Due to the wide usage of LLM-based applications, e.g., ChatGPT, multiple works have been proposed to ensure the security of LLM systems. However, a comprehensive understanding of the entire processes of LLM system construction (the LLM supply chain) is crucial but relevant works are limited. More importantly, the security issues hidden in the LLM SC which could highly impact the reliable usage of LLMs are lack of exploration. Existing works mainly focus on assuring the quality of LLM from the model level, security assurance for the entire LLM SC is ignored. In this work, we take the first step to discuss the potential security risks in each component as well as the integration between components of LLM SC. We summarize 12 security-related risks and provide promising guidance to help build safer LLM systems. We hope our work can facilitate the evolution of artificial general intelligence with secure LLM ecosystems.
Abstract:Autoregression in large language models (LLMs) has shown impressive scalability by unifying all language tasks into the next token prediction paradigm. Recently, there is a growing interest in extending this success to vision foundation models. In this survey, we review the recent advances and discuss future directions for autoregressive vision foundation models. First, we present the trend for next generation of vision foundation models, i.e., unifying both understanding and generation in vision tasks. We then analyze the limitations of existing vision foundation models, and present a formal definition of autoregression with its advantages. Later, we categorize autoregressive vision foundation models from their vision tokenizers and autoregression backbones. Finally, we discuss several promising research challenges and directions. To the best of our knowledge, this is the first survey to comprehensively summarize autoregressive vision foundation models under the trend of unifying understanding and generation. A collection of related resources is available at https://github.com/EmmaSRH/ARVFM.
Abstract:Building on the advancements of Large Language Models (LLMs) and Vision Language Models (VLMs), recent research has introduced Vision-Language-Action (VLA) models as an integrated solution for robotic manipulation tasks. These models take camera images and natural language task instructions as input and directly generate control actions for robots to perform specified tasks, greatly improving both decision-making capabilities and interaction with human users. However, the data-driven nature of VLA models, combined with their lack of interpretability, makes the assurance of their effectiveness and robustness a challenging task. This highlights the need for a reliable testing and evaluation platform. For this purpose, in this work, we propose LADEV, a comprehensive and efficient platform specifically designed for evaluating VLA models. We first present a language-driven approach that automatically generates simulation environments from natural language inputs, mitigating the need for manual adjustments and significantly improving testing efficiency. Then, to further assess the influence of language input on the VLA models, we implement a paraphrase mechanism that produces diverse natural language task instructions for testing. Finally, to expedite the evaluation process, we introduce a batch-style method for conducting large-scale testing of VLA models. Using LADEV, we conducted experiments on several state-of-the-art VLA models, demonstrating its effectiveness as a tool for evaluating these models. Our results showed that LADEV not only enhances testing efficiency but also establishes a solid baseline for evaluating VLA models, paving the way for the development of more intelligent and advanced robotic systems.
Abstract:Zero-shot voice conversion (VC) aims to transform the source speaker timbre into an arbitrary unseen one without altering the original speech content.While recent advancements in zero-shot VC methods have shown remarkable progress, there still remains considerable potential for improvement in terms of improving speaker similarity and speech naturalness.In this paper, we propose Takin-VC, a novel zero-shot VC framework based on jointly hybrid content and memory-augmented context-aware timbre modeling to tackle this challenge. Specifically, an effective hybrid content encoder, guided by neural codec training, that leverages quantized features from pre-trained WavLM and HybridFormer is first presented to extract the linguistic content of the source speech. Subsequently, we introduce an advanced cross-attention-based context-aware timbre modeling approach that learns the fine-grained, semantically associated target timbre features. To further enhance both speaker similarity and real-time performance, we utilize a conditional flow matching model to reconstruct the Mel-spectrogram of the source speech. Additionally, we advocate an efficient memory-augmented module designed to generate high-quality conditional target inputs for the flow matching process, thereby improving the overall performance of the proposed system. Experimental results demonstrate that the proposed Takin-VC method surpasses state-of-the-art zero-shot VC systems, delivering superior performance in terms of both speech naturalness and speaker similarity.
Abstract:The human brain exhibits a strong ability to spontaneously associate different visual attributes of the same or similar visual scene, such as associating sketches and graffiti with real-world visual objects, usually without supervising information. In contrast, in the field of artificial intelligence, controllable generation methods like ControlNet heavily rely on annotated training datasets such as depth maps, semantic segmentation maps, and poses, which limits the method's scalability. Inspired by the neural mechanisms that may contribute to the brain's associative power, specifically the cortical modularization and hippocampal pattern completion, here we propose a self-supervised controllable generation (SCG) framework. Firstly, we introduce an equivariant constraint to promote inter-module independence and intra-module correlation in a modular autoencoder network, thereby achieving functional specialization. Subsequently, based on these specialized modules, we employ a self-supervised pattern completion approach for controllable generation training. Experimental results demonstrate that the proposed modular autoencoder effectively achieves functional specialization, including the modular processing of color, brightness, and edge detection, and exhibits brain-like features including orientation selectivity, color antagonism, and center-surround receptive fields. Through self-supervised training, associative generation capabilities spontaneously emerge in SCG, demonstrating excellent generalization ability to various tasks such as associative generation on painting, sketches, and ancient graffiti. Compared to the previous representative method ControlNet, our proposed approach not only demonstrates superior robustness in more challenging high-noise scenarios but also possesses more promising scalability potential due to its self-supervised manner.