Abstract:Event cameras, as an emerging imaging technology, offer distinct advantages over traditional RGB cameras, including reduced energy consumption and higher frame rates. However, the limited quantity of available event data presents a significant challenge, hindering their broader development. To alleviate this issue, we introduce a tailored U-shaped State Space Model Knowledge Transfer (USKT) framework for Event-to-RGB knowledge transfer. This framework generates inputs compatible with RGB frames, enabling event data to effectively reuse pre-trained RGB models and achieve competitive performance with minimal parameter tuning. Within the USKT architecture, we also propose a bidirectional reverse state space model. Unlike conventional bidirectional scanning mechanisms, the proposed Bidirectional Reverse State Space Model (BiR-SSM) leverages a shared weight strategy, which facilitates efficient modeling while conserving computational resources. In terms of effectiveness, integrating USKT with ResNet50 as the backbone improves model performance by 0.95%, 3.57%, and 2.9% on DVS128 Gesture, N-Caltech101, and CIFAR-10-DVS datasets, respectively, underscoring USKT's adaptability and effectiveness. The code will be made available upon acceptance.
Abstract:With the advent of the era of foundation models, pre-training and fine-tuning have become common paradigms. Recently, parameter-efficient fine-tuning has garnered widespread attention due to its better balance between the number of learnable parameters and performance. However, some current parameter-efficient fine-tuning methods only model a single modality and lack the utilization of structural knowledge in downstream tasks. To address this issue, this paper proposes a multi-modal parameter-efficient fine-tuning method based on graph networks. Each image is fed into a multi-modal large language model (MLLM) to generate a text description. The image and its corresponding text description are then processed by a frozen image encoder and text encoder to generate image features and text features, respectively. A graph is constructed based on the similarity of the multi-modal feature nodes, and knowledge and relationships relevant to these features are extracted from each node. Additionally, Elastic Weight Consolidation (EWC) regularization is incorporated into the loss function to mitigate the problem of forgetting during task learning. The proposed model achieves test accuracies on the OxfordPets, Flowers102, and Food101 datasets that improve by 4.45%, 2.92%, and 0.23%, respectively. The code is available at https://github.com/yunche0/GA-Net/tree/master.
Abstract:Action recognition from video data forms a cornerstone with wide-ranging applications. Single-view action recognition faces limitations due to its reliance on a single viewpoint. In contrast, multi-view approaches capture complementary information from various viewpoints for improved accuracy. Recently, event cameras have emerged as innovative bio-inspired sensors, leading to advancements in event-based action recognition. However, existing works predominantly focus on single-view scenarios, leaving a gap in multi-view event data exploitation, particularly in challenges like information deficit and semantic misalignment. To bridge this gap, we introduce HyperMV, a multi-view event-based action recognition framework. HyperMV converts discrete event data into frame-like representations and extracts view-related features using a shared convolutional network. By treating segments as vertices and constructing hyperedges using rule-based and KNN-based strategies, a multi-view hypergraph neural network that captures relationships across viewpoint and temporal features is established. The vertex attention hypergraph propagation is also introduced for enhanced feature fusion. To prompt research in this area, we present the largest multi-view event-based action dataset $\text{THU}^{\text{MV-EACT}}\text{-50}$, comprising 50 actions from 6 viewpoints, which surpasses existing datasets by over tenfold. Experimental results show that HyperMV significantly outperforms baselines in both cross-subject and cross-view scenarios, and also exceeds the state-of-the-arts in frame-based multi-view action recognition.
Abstract:As natural image understanding moves towards the pretrain-finetune era, research in pathology imaging is concurrently evolving. Despite the predominant focus on pretraining pathological foundation models, how to adapt foundation models to downstream tasks is little explored. For downstream adaptation, we propose the existence of two domain gaps, i.e., the Foundation-Task Gap and the Task-Instance Gap. To mitigate these gaps, we introduce PathoTune, a framework designed to efficiently adapt pathological or even visual foundation models to pathology-specific tasks via multi-modal prompt tuning. The proposed framework leverages Task-specific Visual Prompts and Task-specific Textual Prompts to identify task-relevant features, along with Instance-specific Visual Prompts for encoding single pathological image features. Results across multiple datasets at both patch-level and WSI-level demonstrate its superior performance over single-modality prompt tuning approaches. Significantly, PathoTune facilitates the direct adaptation of natural visual foundation models to pathological tasks, drastically outperforming pathological foundation models with simple linear probing. The code will be available upon acceptance.
Abstract:We designed and built a game called \textit{Immersive Text Game}, which allows the player to choose a story and a character, and interact with other characters in the story in an immersive manner of dialogues. The game is based on several latest models, including text generation language model, information extraction model, commonsense reasoning model, and psychology evaluation model. In the past, similar text games usually let players choose from limited actions instead of answering on their own, and not every time what characters said are determined by the player. Through the combination of these models and elaborate game mechanics and modes, the player will find some novel experiences as driven through the storyline.