Abstract:Weakly Supervised Semantic Segmentation (WSSS) using only image-level labels has gained significant attention due to its cost-effectiveness. The typical framework involves using image-level labels as training data to generate pixel-level pseudo-labels with refinements. Recently, methods based on Vision Transformers (ViT) have demonstrated superior capabilities in generating reliable pseudo-labels, particularly in recognizing complete object regions, compared to CNN methods. However, current ViT-based approaches have some limitations in the use of patch embeddings, being prone to being dominated by certain abnormal patches, as well as many multi-stage methods being time-consuming and lengthy in training, thus lacking efficiency. Therefore, in this paper, we introduce a novel ViT-based WSSS method named \textit{Adaptive Patch Contrast} (APC) that significantly enhances patch embedding learning for improved segmentation effectiveness. APC utilizes an Adaptive-K Pooling (AKP) layer to address the limitations of previous max pooling selection methods. Additionally, we propose a Patch Contrastive Learning (PCL) to enhance patch embeddings, thereby further improving the final results. Furthermore, we improve upon the existing multi-stage training framework without CAM by transforming it into an end-to-end single-stage training approach, thereby enhancing training efficiency. The experimental results show that our approach is effective and efficient, outperforming other state-of-the-art WSSS methods on the PASCAL VOC 2012 and MS COCO 2014 dataset within a shorter training duration.
Abstract:Weakly supervised semantic segmentation has witnessed great achievements with image-level labels. Several recent approaches use the CLIP model to generate pseudo labels for training an individual segmentation model, while there is no attempt to apply the CLIP model as the backbone to directly segment objects with image-level labels. In this paper, we propose WeCLIP, a CLIP-based single-stage pipeline, for weakly supervised semantic segmentation. Specifically, the frozen CLIP model is applied as the backbone for semantic feature extraction, and a new decoder is designed to interpret extracted semantic features for final prediction. Meanwhile, we utilize the above frozen backbone to generate pseudo labels for training the decoder. Such labels cannot be optimized during training. We then propose a refinement module (RFM) to rectify them dynamically. Our architecture enforces the proposed decoder and RFM to benefit from each other to boost the final performance. Extensive experiments show that our approach significantly outperforms other approaches with less training cost. Additionally, our WeCLIP also obtains promising results for fully supervised settings. The code is available at https://github.com/zbf1991/WeCLIP.
Abstract:Most continual segmentation methods tackle the problem as a per-pixel classification task. However, such a paradigm is very challenging, and we find query-based segmenters with built-in objectness have inherent advantages compared with per-pixel ones, as objectness has strong transfer ability and forgetting resistance. Based on these findings, we propose CoMasTRe by disentangling continual segmentation into two stages: forgetting-resistant continual objectness learning and well-researched continual classification. CoMasTRe uses a two-stage segmenter learning class-agnostic mask proposals at the first stage and leaving recognition to the second stage. During continual learning, a simple but effective distillation is adopted to strengthen objectness. To further mitigate the forgetting of old classes, we design a multi-label class distillation strategy suited for segmentation. We assess the effectiveness of CoMasTRe on PASCAL VOC and ADE20K. Extensive experiments show that our method outperforms per-pixel and query-based methods on both datasets. Code will be available at https://github.com/jordangong/CoMasTRe.
Abstract:Semi-supervised semantic segmentation allows model to mine effective supervision from unlabeled data to complement label-guided training. Recent research has primarily focused on consistency regularization techniques, exploring perturbation-invariant training at both the image and feature levels. In this work, we proposed a novel feature-level consistency learning framework named Density-Descending Feature Perturbation (DDFP). Inspired by the low-density separation assumption in semi-supervised learning, our key insight is that feature density can shed a light on the most promising direction for the segmentation classifier to explore, which is the regions with lower density. We propose to shift features with confident predictions towards lower-density regions by perturbation injection. The perturbed features are then supervised by the predictions on the original features, thereby compelling the classifier to explore less dense regions to effectively regularize the decision boundary. Central to our method is the estimation of feature density. To this end, we introduce a lightweight density estimator based on normalizing flow, allowing for efficient capture of the feature density distribution in an online manner. By extracting gradients from the density estimator, we can determine the direction towards less dense regions for each feature. The proposed DDFP outperforms other designs on feature-level perturbations and shows state of the art performances on both Pascal VOC and Cityscapes dataset under various partition protocols. The project is available at https://github.com/Gavinwxy/DDFP.
Abstract:Image-level weakly supervised semantic segmentation has received increasing attention due to its low annotation cost. Existing methods mainly rely on Class Activation Mapping (CAM) to obtain pseudo-labels for training semantic segmentation models. In this work, we are the first to demonstrate that long-tailed distribution in training data can cause the CAM calculated through classifier weights over-activated for head classes and under-activated for tail classes due to the shared features among head- and tail- classes. This degrades pseudo-label quality and further influences final semantic segmentation performance. To address this issue, we propose a Shared Feature Calibration (SFC) method for CAM generation. Specifically, we leverage the class prototypes that carry positive shared features and propose a Multi-Scaled Distribution-Weighted (MSDW) consistency loss for narrowing the gap between the CAMs generated through classifier weights and class prototypes during training. The MSDW loss counterbalances over-activation and under-activation by calibrating the shared features in head-/tail-class classifier weights. Experimental results show that our SFC significantly improves CAM boundaries and achieves new state-of-the-art performances. The project is available at https://github.com/Barrett-python/SFC.
Abstract:Weakly-supervised semantic segmentation (WSSS), which aims to train segmentation models solely using image-level labels, has achieved significant attention. Existing methods primarily focus on generating high-quality pseudo labels using available images and their image-level labels. However, the quality of pseudo labels degrades significantly when the size of available dataset is limited. Thus, in this paper, we tackle this problem from a different view by introducing a novel approach called Image Augmentation with Controlled Diffusion (IACD). This framework effectively augments existing labeled datasets by generating diverse images through controlled diffusion, where the available images and image-level labels are served as the controlling information. Moreover, we also propose a high-quality image selection strategy to mitigate the potential noise introduced by the randomness of diffusion models. In the experiments, our proposed IACD approach clearly surpasses existing state-of-the-art methods. This effect is more obvious when the amount of available data is small, demonstrating the effectiveness of our method.
Abstract:Weakly Supervised Semantic Segmentation (WSSS) using only image-level labels has gained significant attention due to cost-effectiveness. Recently, Vision Transformer (ViT) based methods without class activation map (CAM) have shown greater capability in generating reliable pseudo labels than previous methods using CAM. However, the current ViT-based methods utilize max pooling to select the patch with the highest prediction score to map the patch-level classification to the image-level one, which may affect the quality of pseudo labels due to the inaccurate classification of the patches. In this paper, we introduce a novel ViT-based WSSS method named top-K pooling with patch contrastive learning (TKP-PCL), which employs a top-K pooling layer to alleviate the limitations of previous max pooling selection. A patch contrastive error (PCE) is also proposed to enhance the patch embeddings to further improve the final results. The experimental results show that our approach is very efficient and outperforms other state-of-the-art WSSS methods on the PASCAL VOC 2012 dataset.
Abstract:Siamese network has been a de facto benchmark framework for 3D LiDAR object tracking with a shared-parametric encoder extracting features from template and search region, respectively. This paradigm relies heavily on an additional matching network to model the cross-correlation/similarity of the template and search region. In this paper, we forsake the conventional Siamese paradigm and propose a novel single-branch framework, SyncTrack, synchronizing the feature extracting and matching to avoid forwarding encoder twice for template and search region as well as introducing extra parameters of matching network. The synchronization mechanism is based on the dynamic affinity of the Transformer, and an in-depth analysis of the relevance is provided theoretically. Moreover, based on the synchronization, we introduce a novel Attentive Points-Sampling strategy into the Transformer layers (APST), replacing the random/Farthest Points Sampling (FPS) method with sampling under the supervision of attentive relations between the template and search region. It implies connecting point-wise sampling with the feature learning, beneficial to aggregating more distinctive and geometric features for tracking with sparse points. Extensive experiments on two benchmark datasets (KITTI and NuScenes) show that SyncTrack achieves state-of-the-art performance in real-time tracking.
Abstract:This paper proposes a multi-object tracking (MOT) algorithm for traffic monitoring using a drone equipped with optical and thermal cameras. Object detections on the images are obtained using a neural network for each type of camera. The cameras are modelled as direction-of-arrival (DOA) sensors. Each DOA detection follows a von-Mises Fisher distribution, whose mean direction is obtain by projecting a vehicle position on the ground to the camera. We then use the trajectory Poisson multi-Bernoulli mixture filter (TPMBM), which is a Bayesian MOT algorithm, to optimally estimate the set of vehicle trajectories. We have also developed a parameter estimation algorithm for the measurement model. We have tested the accuracy of the resulting TPMBM filter in synthetic and experimental data sets.
Abstract:Referring Expression Segmentation (RES), which is aimed at localizing and segmenting the target according to the given language expression, has drawn increasing attention. Existing methods jointly consider the localization and segmentation steps, which rely on the fused visual and linguistic features for both steps. We argue that the conflict between the purpose of identifying an object and generating a mask limits the RES performance. To solve this problem, we propose a parallel position-kernel-segmentation pipeline to better isolate and then interact the localization and segmentation steps. In our pipeline, linguistic information will not directly contaminate the visual feature for segmentation. Specifically, the localization step localizes the target object in the image based on the referring expression, and then the visual kernel obtained from the localization step guides the segmentation step. This pipeline also enables us to train RES in a weakly-supervised way, where the pixel-level segmentation labels are replaced by click annotations on center and corner points. The position head is fully-supervised and trained with the click annotations as supervision, and the segmentation head is trained with weakly-supervised segmentation losses. To validate our framework on a weakly-supervised setting, we annotated three RES benchmark datasets (RefCOCO, RefCOCO+ and RefCOCOg) with click annotations.Our method is simple but surprisingly effective, outperforming all previous state-of-the-art RES methods on fully- and weakly-supervised settings by a large margin. The benchmark code and datasets will be released.