Abstract:Weakly-supervised semantic segmentation (WSSS) has achieved remarkable progress using only image-level labels. However, most existing WSSS methods focus on designing new network structures and loss functions to generate more accurate dense labels, overlooking the limitations imposed by fixed datasets, which can constrain performance improvements. We argue that more diverse trainable images provides WSSS richer information and help model understand more comprehensive semantic pattern. Therefore in this paper, we introduce a novel approach called Image Augmentation Agent (IAA) which shows that it is possible to enhance WSSS from data generation perspective. IAA mainly design an augmentation agent that leverages large language models (LLMs) and diffusion models to automatically generate additional images for WSSS. In practice, to address the instability in prompt generation by LLMs, we develop a prompt self-refinement mechanism. It allow LLMs to re-evaluate the rationality of generated prompts to produce more coherent prompts. Additionally, we insert an online filter into diffusion generation process to dynamically ensure the quality and balance of generated images. Experimental results show that our method significantly surpasses state-of-the-art WSSS approaches on the PASCAL VOC 2012 and MS COCO 2014 datasets.
Abstract:Scalable learning of humanoid robots is crucial for their deployment in real-world applications. While traditional approaches primarily rely on reinforcement learning or teleoperation to achieve whole-body control, they are often limited by the diversity of simulated environments and the high costs of demonstration collection. In contrast, human videos are ubiquitous and present an untapped source of semantic and motion information that could significantly enhance the generalization capabilities of humanoid robots. This paper introduces Humanoid-X, a large-scale dataset of over 20 million humanoid robot poses with corresponding text-based motion descriptions, designed to leverage this abundant data. Humanoid-X is curated through a comprehensive pipeline: data mining from the Internet, video caption generation, motion retargeting of humans to humanoid robots, and policy learning for real-world deployment. With Humanoid-X, we further train a large humanoid model, UH-1, which takes text instructions as input and outputs corresponding actions to control a humanoid robot. Extensive simulated and real-world experiments validate that our scalable training approach leads to superior generalization in text-based humanoid control, marking a significant step toward adaptable, real-world-ready humanoid robots.
Abstract:Weakly Supervised Semantic Segmentation (WSSS), which leverages image-level labels, has garnered significant attention due to its cost-effectiveness. The previous methods mainly strengthen the inter-class differences to avoid class semantic ambiguity which may lead to erroneous activation. However, they overlook the positive function of some shared information between similar classes. Categories within the same cluster share some similar features. Allowing the model to recognize these features can further relieve the semantic ambiguity between these classes. To effectively identify and utilize this shared information, in this paper, we introduce a novel WSSS framework called Prompt Categories Clustering (PCC). Specifically, we explore the ability of Large Language Models (LLMs) to derive category clusters through prompts. These clusters effectively represent the intrinsic relationships between categories. By integrating this relational information into the training network, our model is able to better learn the hidden connections between categories. Experimental results demonstrate the effectiveness of our approach, showing its ability to enhance performance on the PASCAL VOC 2012 dataset and surpass existing state-of-the-art methods in WSSS.
Abstract:The emergence of novel the dummy data injection attack (DDIA) poses a severe threat to the secure and stable operation of power systems. These attacks are particularly perilous due to the minimal Euclidean spatial separation between the injected malicious data and legitimate data, rendering their precise detection challenging using conventional distance-based methods. Furthermore, existing research predominantly focuses on various machine learning techniques, often analyzing the temporal data sequences post-attack or relying solely on Euclidean spatial characteristics. Unfortunately, this approach tends to overlook the inherent topological correlations within the non-Euclidean spatial attributes of power grid data, consequently leading to diminished accuracy in attack localization. To address this issue, this study takes a comprehensive approach. Initially, it examines the underlying principles of these new DDIAs on power systems. Here, an intricate mathematical model of the DDIA is designed, accounting for incomplete topological knowledge and alternating current (AC) state estimation from an attacker's perspective. Subsequently, by integrating a priori knowledge of grid topology and considering the temporal correlations within measurement data and the topology-dependent attributes of the power grid, this study introduces temporal and spatial attention matrices. These matrices adaptively capture the spatio-temporal correlations within the attacks. Leveraging gated stacked causal convolution and graph wavelet sparse convolution, the study jointly extracts spatio-temporal DDIA features. Finally, the research proposes a DDIA localization method based on spatio-temporal graph neural networks. The accuracy and effectiveness of the DDIA model are rigorously demonstrated through comprehensive analytical cases.
Abstract:Chinese Spelling Check (CSC) refers to the detection and correction of spelling errors in Chinese texts. In practical application scenarios, it is important to make CSC models have the ability to correct errors across different domains. In this paper, we propose a retrieval-augmented spelling check framework called RSpell, which searches corresponding domain terms and incorporates them into CSC models. Specifically, we employ pinyin fuzzy matching to search for terms, which are combined with the input and fed into the CSC model. Then, we introduce an adaptive process control mechanism to dynamically adjust the impact of external knowledge on the model. Additionally, we develop an iterative strategy for the RSpell framework to enhance reasoning capabilities. We conducted experiments on CSC datasets in three domains: law, medicine, and official document writing. The results demonstrate that RSpell achieves state-of-the-art performance in both zero-shot and fine-tuning scenarios, demonstrating the effectiveness of the retrieval-augmented CSC framework. Our code is available at https://github.com/47777777/Rspell.