Abstract:Variable Subset Forecasting (VSF) refers to a unique scenario in multivariate time series forecasting, where available variables in the inference phase are only a subset of the variables in the training phase. VSF presents significant challenges as the entire time series may be missing, and neither inter- nor intra-variable correlations persist. Such conditions impede the effectiveness of traditional imputation methods, primarily focusing on filling in individual missing data points. Inspired by the principle of feature engineering that not all variables contribute positively to forecasting, we propose Task-Oriented Imputation for VSF (TOI-VSF), a novel framework shifts the focus from accurate data recovery to directly support the downstream forecasting task. TOI-VSF incorporates a self-supervised imputation module, agnostic to the forecasting model, designed to fill in missing variables while preserving the vital characteristics and temporal patterns of time series data. Additionally, we implement a joint learning strategy for imputation and forecasting, ensuring that the imputation process is directly aligned with and beneficial to the forecasting objective. Extensive experiments across four datasets demonstrate the superiority of TOI-VSF, outperforming baseline methods by $15\%$ on average.
Abstract:Efficient wideband spectrum sensing (WSS) is essential for managing spectrum scarcity in wireless communications. However, existing compressed sensing (CS)-based WSS methods require high sampling rates and power consumption, particularly with high-precision analog-to-digital converters (ADCs). Although 1-bit CS with low-precision ADCs can mitigate these demands, most approaches still depend on multi-user cooperation and prior sparsity information, which are often unavailable in WSS scenarios. This paper introduces a non-cooperative WSS method using multicoset sampling with 1-bit ADCs to achieve sub-Nyquist sampling without requiring sparsity knowledge. We analyze the impact of 1-bit quantization on multiband signals, then apply eigenvalue decomposition to isolate the signal subspace from noise, enabling spectrum support estimation without signal reconstruction. This approach provides a power-efficient solution for WSS that eliminates the need for cooperation and prior information.
Abstract:Constrained reinforcement learning has achieved promising progress in safety-critical fields where both rewards and constraints are considered. However, constrained reinforcement learning methods face challenges in striking the right balance between task performance and constraint satisfaction and it is prone for them to get stuck in over-conservative or constraint violating local minima. In this paper, we propose Adversarial Constrained Policy Optimization (ACPO), which enables simultaneous optimization of reward and the adaptation of cost budgets during training. Our approach divides original constrained problem into two adversarial stages that are solved alternately, and the policy update performance of our algorithm can be theoretically guaranteed. We validate our method through experiments conducted on Safety Gymnasium and quadruped locomotion tasks. Results demonstrate that our algorithm achieves better performances compared to commonly used baselines.
Abstract:This paper presents GBSense, an innovative compressed spectrum sensing system designed for GHz-bandwidth signals. GBSense introduces a novel approach to realize periodic nonuniform sampling that efficiently captures wideband signals using significantly lower sampling rates compared to traditional Nyquist sampling. The system incorporates time-interleaved analog-to-digital conversion, which eliminates the need for the complex analog delays typically required in multicoset sampling architectures, and offers real-time adjustable sampling patterns. The hardware design includes a dedicated clock distribution circuit and the implementation of a standard protocol to ensure precise synchronization of nonuniform samples. GBSense can process signals with a 2 GHz radio frequency bandwidth using only a 400 MHz average sampling rate. Lab tests demonstrate 100\% accurate spectrum reconstruction when the spectrum occupancy is below 100 MHz and over 80\% accuracy for occupancy up to 200 MHz. Additionally, an integrated system built around the GBSense core and a low-power Raspberry Pi processor achieves a low processing latency of around 30 ms per frame, showcasing strong real-time performance. This work highlights the potential of GBSense as a high-efficiency solution for dynamic spectrum access in future wireless communication systems.
Abstract:Existing benchmarks like NLGraph and GraphQA evaluate LLMs on graphs by focusing mainly on pairwise relationships, overlooking the high-order correlations found in real-world data. Hypergraphs, which can model complex beyond-pairwise relationships, offer a more robust framework but are still underexplored in the context of LLMs. To address this gap, we introduce LLM4Hypergraph, the first comprehensive benchmark comprising 21,500 problems across eight low-order, five high-order, and two isomorphism tasks, utilizing both synthetic and real-world hypergraphs from citation networks and protein structures. We evaluate six prominent LLMs, including GPT-4o, demonstrating our benchmark's effectiveness in identifying model strengths and weaknesses. Our specialized prompting framework incorporates seven hypergraph languages and introduces two novel techniques, Hyper-BAG and Hyper-COT, which enhance high-order reasoning and achieve an average 4% (up to 9%) performance improvement on structure classification tasks. This work establishes a foundational testbed for integrating hypergraph computational capabilities into LLMs, advancing their comprehension.
Abstract:Given the wide adoption of multimodal sensors (e.g., camera, lidar, radar) by autonomous vehicles (AVs), deep analytics to fuse their outputs for a robust perception become imperative. However, existing fusion methods often make two assumptions rarely holding in practice: i) similar data distributions for all inputs and ii) constant availability for all sensors. Because, for example, lidars have various resolutions and failures of radars may occur, such variability often results in significant performance degradation in fusion. To this end, we present tREADi, an adaptive inference system that accommodates the variability of multimodal sensory data and thus enables robust and efficient perception. t-READi identifies variation-sensitive yet structure-specific model parameters; it then adapts only these parameters while keeping the rest intact. t-READi also leverages a cross-modality contrastive learning method to compensate for the loss from missing modalities. Both functions are implemented to maintain compatibility with existing multimodal deep fusion methods. The extensive experiments evidently demonstrate that compared with the status quo approaches, t-READi not only improves the average inference accuracy by more than 6% but also reduces the inference latency by almost 15x with the cost of only 5% extra memory overhead in the worst case under realistic data and modal variations.
Abstract:To bridge the gap between artists and non-specialists, we present a unified framework, Neural-Polyptych, to facilitate the creation of expansive, high-resolution paintings by seamlessly incorporating interactive hand-drawn sketches with fragments from original paintings. We have designed a multi-scale GAN-based architecture to decompose the generation process into two parts, each responsible for identifying global and local features. To enhance the fidelity of semantic details generated from users' sketched outlines, we introduce a Correspondence Attention module utilizing our Reference Bank strategy. This ensures the creation of high-quality, intricately detailed elements within the artwork. The final result is achieved by carefully blending these local elements while preserving coherent global consistency. Consequently, this methodology enables the production of digital paintings at megapixel scale, accommodating diverse artistic expressions and enabling users to recreate content in a controlled manner. We validate our approach to diverse genres of both Eastern and Western paintings. Applications such as large painting extension, texture shuffling, genre switching, mural art restoration, and recomposition can be successfully based on our framework.
Abstract:We introduce Hyper-YOLO, a new object detection method that integrates hypergraph computations to capture the complex high-order correlations among visual features. Traditional YOLO models, while powerful, have limitations in their neck designs that restrict the integration of cross-level features and the exploitation of high-order feature interrelationships. To address these challenges, we propose the Hypergraph Computation Empowered Semantic Collecting and Scattering (HGC-SCS) framework, which transposes visual feature maps into a semantic space and constructs a hypergraph for high-order message propagation. This enables the model to acquire both semantic and structural information, advancing beyond conventional feature-focused learning. Hyper-YOLO incorporates the proposed Mixed Aggregation Network (MANet) in its backbone for enhanced feature extraction and introduces the Hypergraph-Based Cross-Level and Cross-Position Representation Network (HyperC2Net) in its neck. HyperC2Net operates across five scales and breaks free from traditional grid structures, allowing for sophisticated high-order interactions across levels and positions. This synergy of components positions Hyper-YOLO as a state-of-the-art architecture in various scale models, as evidenced by its superior performance on the COCO dataset. Specifically, Hyper-YOLO-N significantly outperforms the advanced YOLOv8-N and YOLOv9-T with 12\% $\text{AP}^{val}$ and 9\% $\text{AP}^{val}$ improvements. The source codes are at ttps://github.com/iMoonLab/Hyper-YOLO.
Abstract:The scalability of large language models (LLMs) in handling high-complexity models and large-scale datasets has led to tremendous successes in pivotal domains. While there is an urgent need to acquire more training data for LLMs, a concerning reality is the depletion of high-quality public datasets within a few years. In view of this, the federated learning (FL) LLM fine-tuning paradigm recently has been proposed to facilitate collaborative LLM fine-tuning on distributed private data, where multiple data owners collaboratively fine-tune a shared LLM without sharing raw data. However, the staggering model size of LLMs imposes heavy computing and communication burdens on clients, posing significant barriers to the democratization of the FL LLM fine-tuning paradigm. To address this issue, split learning (SL) has emerged as a promising solution by offloading the primary training workload to a server via model partitioning while exchanging activation/activation's gradients with smaller data sizes rather than the entire LLM. Unfortunately, research on the SL LLM fine-tuning paradigm is still in its nascent stage. To fill this gap, in this paper, we propose the first SL LLM fine-tuning framework, named SplitLoRA. SplitLoRA is built on the split federated learning (SFL) framework, amalgamating the advantages of parallel training from FL and model splitting from SL and thus greatly enhancing the training efficiency. It is worth noting that SplitLoRA is the inaugural open-source benchmark for SL LLM fine-tuning, providing a foundation for research efforts dedicated to advancing SL LLM fine-tuning. Extensive simulations validate that SplitLoRA achieves target accuracy in significantly less time than state-of-the-art LLM fine-tuning frameworks, demonstrating the superior training performance of SplitLoRA. The project page is available at https://fduinc.github.io/splitlora/.
Abstract:High-resolution electron microscopy (HREM) imaging technique is a powerful tool for directly visualizing a broad range of materials in real-space. However, it faces challenges in denoising due to ultra-low signal-to-noise ratio (SNR) and scarce data availability. In this work, we propose Noise2SR, a zero-shot self-supervised learning (ZS-SSL) denoising framework for HREM. Within our framework, we propose a super-resolution (SR) based self-supervised training strategy, incorporating the Random Sub-sampler module. The Random Sub-sampler is designed to generate approximate infinite noisy pairs from a single noisy image, serving as an effective data augmentation in zero-shot denoising. Noise2SR trains the network with paired noisy images of different resolutions, which is conducted via SR strategy. The SR-based training facilitates the network adopting more pixels for supervision, and the random sub-sampling helps compel the network to learn continuous signals enhancing the robustness. Meanwhile, we mitigate the uncertainty caused by random-sampling by adopting minimum mean squared error (MMSE) estimation for the denoised results. With the distinctive integration of training strategy and proposed designs, Noise2SR can achieve superior denoising performance using a single noisy HREM image. We evaluate the performance of Noise2SR in both simulated and real HREM denoising tasks. It outperforms state-of-the-art ZS-SSL methods and achieves comparable denoising performance with supervised methods. The success of Noise2SR suggests its potential for improving the SNR of images in material imaging domains.