Abstract:Multimodal pathology-genomic analysis is critical for cancer survival prediction. However, existing approaches predominantly integrate formalin-fixed paraffin-embedded (FFPE) slides with genomic data, while neglecting the availability of other preservation slides, such as Fresh Froze (FF) slides. Moreover, as the high-resolution spatial nature of pathology data tends to dominate the cross-modality fusion process, it hinders effective multimodal fusion and leads to modality imbalance challenges between pathology and genomics. These methods also typically require complete data modalities, limiting their clinical applicability with incomplete modalities, such as missing either pathology or genomic data. In this paper, we propose a multimodal survival prediction framework that leverages hypergraph learning to effectively integrate multi-WSI information and cross-modality interactions between pathology slides and genomics data while addressing modality imbalance. In addition, we introduce a memory mechanism that stores previously learned paired pathology-genomic features and dynamically compensates for incomplete modalities. Experiments on five TCGA datasets demonstrate that our model outperforms advanced methods by over 2.3% in C-Index. Under incomplete modality scenarios, our approach surpasses pathology-only (3.3%) and gene-only models (7.9%). Code: https://github.com/MCPathology/M2Surv
Abstract:We present DyNaVLM, an end-to-end vision-language navigation framework using Vision-Language Models (VLM). In contrast to prior methods constrained by fixed angular or distance intervals, our system empowers agents to freely select navigation targets via visual-language reasoning. At its core lies a self-refining graph memory that 1) stores object locations as executable topological relations, 2) enables cross-robot memory sharing through distributed graph updates, and 3) enhances VLM's decision-making via retrieval augmentation. Operating without task-specific training or fine-tuning, DyNaVLM demonstrates high performance on GOAT and ObjectNav benchmarks. Real-world tests further validate its robustness and generalization. The system's three innovations: dynamic action space formulation, collaborative graph memory, and training-free deployment, establish a new paradigm for scalable embodied robot, bridging the gap between discrete VLN tasks and continuous real-world navigation.
Abstract:Effective reinforcement learning (RL) for sepsis treatment depends on learning stable, clinically meaningful state representations from irregular ICU time series. While previous works have explored representation learning for this task, the critical challenge of training instability in sequential representations and its detrimental impact on policy performance has been overlooked. This work demonstrates that Controlled Differential Equations (CDE) state representation can achieve strong RL policies when two key factors are met: (1) ensuring training stability through early stopping or stabilization methods, and (2) enforcing acuity-aware representations by correlation regularization with clinical scores (SOFA, SAPS-II, OASIS). Experiments on the MIMIC-III sepsis cohort reveal that stable CDE autoencoder produces representations strongly correlated with acuity scores and enables RL policies with superior performance (WIS return $> 0.9$). In contrast, unstable CDE representation leads to degraded representations and policy failure (WIS return $\sim$ 0). Visualizations of the latent space show that stable CDEs not only separate survivor and non-survivor trajectories but also reveal clear acuity score gradients, whereas unstable training fails to capture either pattern. These findings highlight practical guidelines for using CDEs to encode irregular medical time series in clinical RL, emphasizing the need for training stability in sequential representation learning.
Abstract:Split federated learning (SFL) has emerged as a promising paradigm to democratize machine learning (ML) on edge devices by enabling layer-wise model partitioning. However, existing SFL approaches suffer significantly from the straggler effect due to the heterogeneous capabilities of edge devices. To address the fundamental challenge, we propose adaptively controlling batch sizes (BSs) and model splitting (MS) for edge devices to overcome resource heterogeneity. We first derive a tight convergence bound of SFL that quantifies the impact of varied BSs and MS on learning performance. Based on the convergence bound, we propose HASFL, a heterogeneity-aware SFL framework capable of adaptively controlling BS and MS to balance communication-computing latency and training convergence in heterogeneous edge networks. Extensive experiments with various datasets validate the effectiveness of HASFL and demonstrate its superiority over state-of-the-art benchmarks.
Abstract:We present LTM3D, a Latent Token space Modeling framework for conditional 3D shape generation that integrates the strengths of diffusion and auto-regressive (AR) models. While diffusion-based methods effectively model continuous latent spaces and AR models excel at capturing inter-token dependencies, combining these paradigms for 3D shape generation remains a challenge. To address this, LTM3D features a Conditional Distribution Modeling backbone, leveraging a masked autoencoder and a diffusion model to enhance token dependency learning. Additionally, we introduce Prefix Learning, which aligns condition tokens with shape latent tokens during generation, improving flexibility across modalities. We further propose a Latent Token Reconstruction module with Reconstruction-Guided Sampling to reduce uncertainty and enhance structural fidelity in generated shapes. Our approach operates in token space, enabling support for multiple 3D representations, including signed distance fields, point clouds, meshes, and 3D Gaussian Splatting. Extensive experiments on image- and text-conditioned shape generation tasks demonstrate that LTM3D outperforms existing methods in prompt fidelity and structural accuracy while offering a generalizable framework for multi-modal, multi-representation 3D generation.
Abstract:Whole Slide Images (WSIs) in histopathology present a significant challenge for large-scale medical image analysis due to their high resolution, large size, and complex tile relationships. Existing Multiple Instance Learning (MIL) methods, such as Graph Neural Networks (GNNs) and Transformer-based models, face limitations in scalability and computational cost. To bridge this gap, we propose the WSI-GMamba framework, which synergistically combines the relational modeling strengths of GNNs with the efficiency of Mamba, the State Space Model designed for sequence learning. The proposed GMamba block integrates Message Passing, Graph Scanning & Flattening, and feature aggregation via a Bidirectional State Space Model (Bi-SSM), achieving Transformer-level performance with 7* fewer FLOPs. By leveraging the complementary strengths of lightweight GNNs and Mamba, the WSI-GMamba framework delivers a scalable solution for large-scale WSI analysis, offering both high accuracy and computational efficiency for slide-level classification.
Abstract:Visual recognition relies on understanding both the semantics of image tokens and the complex interactions among them. Mainstream self-attention methods, while effective at modeling global pair-wise relations, fail to capture high-order associations inherent in real-world scenes and often suffer from redundant computation. Hypergraphs extend conventional graphs by modeling high-order interactions and offer a promising framework for addressing these limitations. However, existing hypergraph neural networks typically rely on static and hard hyperedge assignments, leading to excessive and redundant hyperedges with hard binary vertex memberships that overlook the continuity of visual semantics. To overcome these issues, we present Soft Hypergraph Neural Networks (SoftHGNNs), which extend the methodology of hypergraph computation, to make it truly efficient and versatile in visual recognition tasks. Our framework introduces the concept of soft hyperedges, where each vertex is associated with hyperedges via continuous participation weights rather than hard binary assignments. This dynamic and differentiable association is achieved by using the learnable hyperedge prototype. Through similarity measurements between token features and the prototype, the model generates semantically rich soft hyperedges. SoftHGNN then aggregates messages over soft hyperedges to capture high-order semantics. To further enhance efficiency when scaling up the number of soft hyperedges, we incorporate a sparse hyperedge selection mechanism that activates only the top-k important hyperedges, along with a load-balancing regularizer to ensure balanced hyperedge utilization. Experimental results across three tasks on five datasets demonstrate that SoftHGNN efficiently captures high-order associations in visual scenes, achieving significant performance improvements.
Abstract:Multimodal pathology-genomic analysis has become increasingly prominent in cancer survival prediction. However, existing studies mainly utilize multi-instance learning to aggregate patch-level features, neglecting the information loss of contextual and hierarchical details within pathology images. Furthermore, the disparity in data granularity and dimensionality between pathology and genomics leads to a significant modality imbalance. The high spatial resolution inherent in pathology data renders it a dominant role while overshadowing genomics in multimodal integration. In this paper, we propose a multimodal survival prediction framework that incorporates hypergraph learning to effectively capture both contextual and hierarchical details from pathology images. Moreover, it employs a modality rebalance mechanism and an interactive alignment fusion strategy to dynamically reweight the contributions of the two modalities, thereby mitigating the pathology-genomics imbalance. Quantitative and qualitative experiments are conducted on five TCGA datasets, demonstrating that our model outperforms advanced methods by over 3.4\% in C-Index performance.
Abstract:Recently, large language models (LLMs) have achieved remarkable breakthroughs, revolutionizing the natural language processing domain and beyond. Due to immense parameter sizes, fine-tuning these models with private data for diverse downstream tasks has become mainstream. Though federated learning (FL) offers a promising solution for fine-tuning LLMs without sharing raw data, substantial computing costs hinder its democratization. Moreover, in real-world scenarios, private client devices often possess heterogeneous computing resources, further complicating LLM fine-tuning. To combat these challenges, we propose HSplitLoRA, a heterogeneous parameter-efficient fine-tuning (PEFT) framework built on split learning (SL) and low-rank adaptation (LoRA) fine-tuning, for efficiently fine-tuning LLMs on heterogeneous client devices. HSplitLoRA first identifies important weights based on their contributions to LLM training. It then dynamically configures the decomposition ranks of LoRA adapters for selected weights and determines the model split point according to varying computing budgets of client devices. Finally, a noise-free adapter aggregation mechanism is devised to support heterogeneous adapter aggregation without introducing noise. Extensive experiments demonstrate that HSplitLoRA outperforms state-of-the-art benchmarks in training accuracy and convergence speed.
Abstract:The escalating overlap between non-geostationary orbit (NGSO) and geostationary orbit (GSO) satellite frequency allocations necessitates accurate interference detection methods that address two pivotal technical gaps: computationally efficient signal analysis for real-time operation, and robust anomaly discrimination under varying interference patterns. Existing deep learning approaches employ encoder-decoder anomaly detectors that threshold input-output discrepancies for robustness. While the transformer-based TrID model achieves state-of-the-art performance (AUC: 0.8318, F1: 0.8321), its multi-head attention incurs prohibitive computation time, and its decoupled training of time-frequency models overlooks cross-domain dependencies. To overcome these problems, we propose DualAttWaveNet. A bidirectional attention fusion layer dynamically correlates time-domain samples using parameter-efficient cross-attention routing. A wavelet-regularized reconstruction loss enforces multi-scale consistency. We train the model on public dataset which consists of 48 hours of satellite signals. Experiments show that compared to TrID, DualAttWaveNet improves AUC by 12% and reduces inference time by 50% to 540ms per batch while maintaining F1-score.