Abstract:Data sharing is a prerequisite for collaborative innovation, enabling organizations to leverage diverse datasets for deeper insights. In real-world applications like FinTech and Smart Manufacturing, transactional data, often in tabular form, are generated and analyzed for insight generation. However, such datasets typically contain sensitive personal/business information, raising privacy concerns and regulatory risks. Data synthesis tackles this by generating artificial datasets that preserve the statistical characteristics of real data, removing direct links to individuals. However, attackers can still infer sensitive information using background knowledge. Differential privacy offers a solution by providing provable and quantifiable privacy protection. Consequently, differentially private data synthesis has emerged as a promising approach to privacy-aware data sharing. This paper provides a comprehensive overview of existing differentially private tabular data synthesis methods, highlighting the unique challenges of each generation model for generating tabular data under differential privacy constraints. We classify the methods into statistical and deep learning-based approaches based on their generation models, discussing them in both centralized and distributed environments. We evaluate and compare those methods within each category, highlighting their strengths and weaknesses in terms of utility, privacy, and computational complexity. Additionally, we present and discuss various evaluation methods for assessing the quality of the synthesized data, identify research gaps in the field and directions for future research.
Abstract:This letter puts forth a new hybrid horizontal-vertical federated learning (HoVeFL) for mobile edge computing-enabled Internet of Things (EdgeIoT). In this framework, certain EdgeIoT devices train local models using the same data samples but analyze disparate data features, while the others focus on the same features using non-independent and identically distributed (non-IID) data samples. Thus, even though the data features are consistent, the data samples vary across devices. The proposed HoVeFL formulates the training of local and global models to minimize the global loss function. Performance evaluations on CIFAR-10 and SVHN datasets reveal that the testing loss of HoVeFL with 12 horizontal FL devices and six vertical FL devices is 5.5% and 25.2% higher, respectively, compared to a setup with six horizontal FL devices and 12 vertical FL devices.
Abstract:Rapid advances in Machine Learning (ML) have triggered new trends in Autonomous Vehicles (AVs). ML algorithms play a crucial role in interpreting sensor data, predicting potential hazards, and optimizing navigation strategies. However, achieving full autonomy in cluttered and complex situations, such as intricate intersections, diverse sceneries, varied trajectories, and complex missions, is still challenging, and the cost of data labeling remains a significant bottleneck. The adaptability and robustness of humans in complex scenarios motivate the inclusion of humans in ML process, leveraging their creativity, ethical power, and emotional intelligence to improve ML effectiveness. The scientific community knows this approach as Human-In-The-Loop Machine Learning (HITL-ML). Towards safe and ethical autonomy, we present a review of HITL-ML for AVs, focusing on Curriculum Learning (CL), Human-In-The-Loop Reinforcement Learning (HITL-RL), Active Learning (AL), and ethical principles. In CL, human experts systematically train ML models by starting with simple tasks and gradually progressing to more difficult ones. HITL-RL significantly enhances the RL process by incorporating human input through techniques like reward shaping, action injection, and interactive learning. AL streamlines the annotation process by targeting specific instances that need to be labeled with human oversight, reducing the overall time and cost associated with training. Ethical principles must be embedded in AVs to align their behavior with societal values and norms. In addition, we provide insights and specify future research directions.
Abstract:As the primary standard protocol for modern cars, the Controller Area Network (CAN) is a critical research target for automotive cybersecurity threats and autonomous applications. As the decoding specification of CAN is a proprietary black-box maintained by Original Equipment Manufacturers (OEMs), conducting related research and industry developments can be challenging without a comprehensive understanding of the meaning of CAN messages. In this paper, we propose a fully automated reverse-engineering system, named ByCAN, to reverse engineer CAN messages. ByCAN outperforms existing research by introducing byte-level clusters and integrating multiple features at both byte and bit levels. ByCAN employs the clustering and template matching algorithms to automatically decode the specifications of CAN frames without the need for prior knowledge. Experimental results demonstrate that ByCAN achieves high accuracy in slicing and labeling performance, i.e., the identification of CAN signal boundaries and labels. In the experiments, ByCAN achieves slicing accuracy of 80.21%, slicing coverage of 95.21%, and labeling accuracy of 68.72% for general labels when analyzing the real-world CAN frames.
Abstract:Unlearning in various learning frameworks remains challenging, with the continuous growth and updates of models exhibiting complex inheritance relationships. This paper presents a novel unlearning framework, which enables fully parallel unlearning among models exhibiting inheritance. A key enabler is the new Unified Model Inheritance Graph (UMIG), which captures the inheritance using a Directed Acyclic Graph (DAG).Central to our framework is the new Fisher Inheritance Unlearning (FIUn) algorithm, which utilizes the Fisher Information Matrix (FIM) from initial unlearning models to pinpoint impacted parameters in inherited models. By employing FIM, the FIUn method breaks the sequential dependencies among the models, facilitating simultaneous unlearning and reducing computational overhead. We further design to merge disparate FIMs into a single matrix, synchronizing updates across inherited models. Experiments confirm the effectiveness of our unlearning framework. For single-class tasks, it achieves complete unlearning with 0\% accuracy for unlearned labels while maintaining 94.53\% accuracy for retained labels on average. For multi-class tasks, the accuracy is 1.07\% for unlearned labels and 84.77\% for retained labels on average. Our framework accelerates unlearning by 99\% compared to alternative methods.
Abstract:Unmanned Aerial Vehicles (UAVs) provide agile and safe solutions to communication relay networks, offering improved throughput. However, their modeling and control present challenges, and real-world deployment is hindered by the gap between simulation and reality. Moreover, enhancing situational awareness is critical. Several works in the literature proposed integrating UAV operation with immersive digital technologies, such as Digital Twin (DT) and Extended Reality (XR), to address these challenges. This paper provides a comprehensive overview of current research and developments involving immersive digital technologies for UAVs, including the latest advancements and emerging trends. We also explore the integration of DT and XR with Artificial Intelligence (AI) algorithms to create more intelligent, adaptive, and responsive UAV systems. Finally, we provide discussions, identify gaps in current research, and suggest future directions for studying the application of immersive technologies in UAVs, fostering further innovation and development in this field. We envision the fusion of DTs with XR will transform how UAVs operate, offering tools that enhance visualization, improve decision-making, and enable effective collaboration.
Abstract:Federated learning (FL) is a viable technique to train a shared machine learning model without sharing data. Hierarchical FL (HFL) system has yet to be studied regrading its multiple levels of energy, computation, communication, and client scheduling, especially when it comes to clients relying on energy harvesting to power their operations. This paper presents a new two-phase deep deterministic policy gradient (DDPG) framework, referred to as ``TP-DDPG'', to balance online the learning delay and model accuracy of an FL process in an energy harvesting-powered HFL system. The key idea is that we divide optimization decisions into two groups, and employ DDPG to learn one group in the first phase, while interpreting the other group as part of the environment to provide rewards for training the DDPG in the second phase. Specifically, the DDPG learns the selection of participating clients, and their CPU configurations and the transmission powers. A new straggler-aware client association and bandwidth allocation (SCABA) algorithm efficiently optimizes the other decisions and evaluates the reward for the DDPG. Experiments demonstrate that with substantially reduced number of learnable parameters, the TP-DDPG can quickly converge to effective polices that can shorten the training time of HFL by 39.4% compared to its benchmarks, when the required test accuracy of HFL is 0.9.
Abstract:The emerging concept of channel twinning (CT) has great potential to become a key enabler of ubiquitous connectivity in next-generation (xG) wireless systems. By fusing multimodal sensor data, CT advocates a high-fidelity and low-overhead channel acquisition paradigm, which is promising to provide accurate channel prediction in cross-domain and high-mobility scenarios of ubiquitous xG networks. However, the current literature lacks a universal CT architecture to address the challenges of heterogeneous scenarios, data, and resources in xG networks, which hinders the widespread deployment and applications of CT. This article discusses a new modularized CT architecture to bridge the barriers to scene recognition, cooperative sensing, and decentralized training. Based on the modularized design of CT, universal channel modeling, multimodal cooperative sensing, and lightweight twin modeling are described. Moreover, this article provides a concise definition, technical features, and case studies of CT, followed by potential applications of CT-empowered ubiquitous connectivity and some issues requiring future investigations.
Abstract:Recent attacks on federated learning (FL) can introduce malicious model updates that circumvent widely adopted Euclidean distance-based detection methods. This paper proposes a novel defense strategy, referred to as LayerCAM-AE, designed to counteract model poisoning in federated learning. The LayerCAM-AE puts forth a new Layer Class Activation Mapping (LayerCAM) integrated with an autoencoder (AE), significantly enhancing detection capabilities. Specifically, LayerCAM-AE generates a heat map for each local model update, which is then transformed into a more compact visual format. The autoencoder is designed to process the LayerCAM heat maps from the local model updates, improving their distinctiveness and thereby increasing the accuracy in spotting anomalous maps and malicious local models. To address the risk of misclassifications with LayerCAM-AE, a voting algorithm is developed, where a local model update is flagged as malicious if its heat maps are consistently suspicious over several rounds of communication. Extensive tests of LayerCAM-AE on the SVHN and CIFAR-100 datasets are performed under both Independent and Identically Distributed (IID) and non-IID settings in comparison with existing ResNet-50 and REGNETY-800MF defense models. Experimental results show that LayerCAM-AE increases detection rates (Recall: 1.0, Precision: 1.0, FPR: 0.0, Accuracy: 1.0, F1 score: 1.0, AUC: 1.0) and test accuracy in FL, surpassing the performance of both the ResNet-50 and REGNETY-800MF. Our code is available at: https://github.com/jjzgeeks/LayerCAM-AE
Abstract:This paper analyzes the impact of imperfect communication channels on decentralized federated learning (D-FL) and subsequently determines the optimal number of local aggregations per training round, adapting to the network topology and imperfect channels. We start by deriving the bias of locally aggregated D-FL models under imperfect channels from the ideal global models requiring perfect channels and aggregations. The bias reveals that excessive local aggregations can accumulate communication errors and degrade convergence. Another important aspect is that we analyze a convergence upper bound of D-FL based on the bias. By minimizing the bound, the optimal number of local aggregations is identified to balance a trade-off with accumulation of communication errors in the absence of knowledge of the channels. With this knowledge, the impact of communication errors can be alleviated, allowing the convergence upper bound to decrease throughout aggregations. Experiments validate our convergence analysis and also identify the optimal number of local aggregations on two widely considered image classification tasks. It is seen that D-FL, with an optimal number of local aggregations, can outperform its potential alternatives by over 10% in training accuracy.