Abstract:The timely exchange of information among robots within a team is vital, but it can be constrained by limited wireless capacity. The inability to deliver information promptly can result in estimation errors that impact collaborative efforts among robots. In this paper, we propose a new metric termed Loss of Information Utility (LoIU) to quantify the freshness and utility of information critical for cooperation. The metric enables robots to prioritize information transmissions within bandwidth constraints. We also propose the estimation of LoIU using belief distributions and accordingly optimize both transmission schedule and resource allocation strategy for device-to-device transmissions to minimize the time-average LoIU within a robot team. A semi-decentralized Multi-Agent Deep Deterministic Policy Gradient framework is developed, where each robot functions as an actor responsible for scheduling transmissions among its collaborators while a central critic periodically evaluates and refines the actors in response to mobility and interference. Simulations validate the effectiveness of our approach, demonstrating an enhancement of information freshness and utility by 98%, compared to alternative methods.
Abstract:Personalized federated learning (PFL), e.g., the renowned Ditto, strikes a balance between personalization and generalization by conducting federated learning (FL) to guide personalized learning (PL). While FL is unaffected by personalized model training, in Ditto, PL depends on the outcome of the FL. However, the clients' concern about their privacy and consequent perturbation of their local models can affect the convergence and (performance) fairness of PL. This paper presents PFL, called DP-Ditto, which is a non-trivial extension of Ditto under the protection of differential privacy (DP), and analyzes the trade-off among its privacy guarantee, model convergence, and performance distribution fairness. We also analyze the convergence upper bound of the personalized models under DP-Ditto and derive the optimal number of global aggregations given a privacy budget. Further, we analyze the performance fairness of the personalized models, and reveal the feasibility of optimizing DP-Ditto jointly for convergence and fairness. Experiments validate our analysis and demonstrate that DP-Ditto can surpass the DP-perturbed versions of the state-of-the-art PFL models, such as FedAMP, pFedMe, APPLE, and FedALA, by over 32.71% in fairness and 9.66% in accuracy.
Abstract:Inherent communication noises have the potential to preserve privacy for wireless federated learning (WFL) but have been overlooked in digital communication systems predominantly using floating-point number standards, e.g., IEEE 754, for data storage and transmission. This is due to the potentially catastrophic consequences of bit errors in floating-point numbers, e.g., on the sign or exponent bits. This paper presents a novel channel-native bit-flipping differential privacy (DP) mechanism tailored for WFL, where transmit bits are randomly flipped and communication noises are leveraged, to collectively preserve the privacy of WFL in digital communication systems. The key idea is to interpret the bit perturbation at the transmitter and bit errors caused by communication noises as a bit-flipping DP process. This is achieved by designing a new floating-point-to-fixed-point conversion method that only transmits the bits in the fraction part of model parameters, hence eliminating the need for transmitting the sign and exponent bits and preventing the catastrophic consequence of bit errors. We analyze a new metric to measure the bit-level distance of the model parameters and prove that the proposed mechanism satisfies (\lambda,\epsilon)-R\'enyi DP and does not violate the WFL convergence. Experiments validate privacy and convergence analysis of the proposed mechanism and demonstrate its superiority to the state-of-the-art Gaussian mechanisms that are channel-agnostic and add Gaussian noise for privacy protection.
Abstract:With the rapid advancements in deep learning, traditional CAPTCHA schemes are increasingly vulnerable to automated attacks powered by deep neural networks (DNNs). Existing adversarial attack methods often rely on original image characteristics, resulting in distortions that hinder human interpretation and limit applicability in scenarios lacking initial input images. To address these challenges, we propose the Unsourced Adversarial CAPTCHA (UAC), a novel framework generating high-fidelity adversarial examples guided by attacker-specified text prompts. Leveraging a Large Language Model (LLM), UAC enhances CAPTCHA diversity and supports both targeted and untargeted attacks. For targeted attacks, the EDICT method optimizes dual latent variables in a diffusion model for superior image quality. In untargeted attacks, especially for black-box scenarios, we introduce bi-path unsourced adversarial CAPTCHA (BP-UAC), a two-step optimization strategy employing multimodal gradients and bi-path optimization for efficient misclassification. Experiments show BP-UAC achieves high attack success rates across diverse systems, generating natural CAPTCHAs indistinguishable to humans and DNNs.
Abstract:Split federated learning (SFL) has emerged as a promising paradigm to democratize machine learning (ML) on edge devices by enabling layer-wise model partitioning. However, existing SFL approaches suffer significantly from the straggler effect due to the heterogeneous capabilities of edge devices. To address the fundamental challenge, we propose adaptively controlling batch sizes (BSs) and model splitting (MS) for edge devices to overcome resource heterogeneity. We first derive a tight convergence bound of SFL that quantifies the impact of varied BSs and MS on learning performance. Based on the convergence bound, we propose HASFL, a heterogeneity-aware SFL framework capable of adaptively controlling BS and MS to balance communication-computing latency and training convergence in heterogeneous edge networks. Extensive experiments with various datasets validate the effectiveness of HASFL and demonstrate its superiority over state-of-the-art benchmarks.
Abstract:Federated Learning (FL) is a distributed machine learning paradigm based on protecting data privacy of devices, which however, can still be broken by gradient leakage attack via parameter inversion techniques. Differential privacy (DP) technology reduces the risk of private data leakage by adding artificial noise to the gradients, but detrimental to the FL utility at the same time, especially in the scenario where the data is Non-Independent Identically Distributed (Non-IID). Based on the impact of heterogeneous data on aggregation performance, this paper proposes a Lightweight Adaptive Privacy Allocation (LAPA) strategy, which assigns personalized privacy budgets to devices in each aggregation round without transmitting any additional information beyond gradients, ensuring both privacy protection and aggregation efficiency. Furthermore, the Deep Deterministic Policy Gradient (DDPG) algorithm is employed to optimize the transmission power, in order to determine the optimal timing at which the adaptively attenuated artificial noise aligns with the communication noise, enabling an effective balance between DP and system utility. Finally, a reliable aggregation strategy is designed by integrating communication quality and data distribution characteristics, which improves aggregation performance while preserving privacy. Experimental results demonstrate that the personalized noise allocation and dynamic optimization strategy based on LAPA proposed in this paper enhances convergence performance while satisfying the privacy requirements of FL.
Abstract:This paper focuses on Zero-Trust Foundation Models (ZTFMs), a novel paradigm that embeds zero-trust security principles into the lifecycle of foundation models (FMs) for Internet of Things (IoT) systems. By integrating core tenets, such as continuous verification, least privilege access (LPA), data confidentiality, and behavioral analytics into the design, training, and deployment of FMs, ZTFMs can enable secure, privacy-preserving AI across distributed, heterogeneous, and potentially adversarial IoT environments. We present the first structured synthesis of ZTFMs, identifying their potential to transform conventional trust-based IoT architectures into resilient, self-defending ecosystems. Moreover, we propose a comprehensive technical framework, incorporating federated learning (FL), blockchain-based identity management, micro-segmentation, and trusted execution environments (TEEs) to support decentralized, verifiable intelligence at the network edge. In addition, we investigate emerging security threats unique to ZTFM-enabled systems and evaluate countermeasures, such as anomaly detection, adversarial training, and secure aggregation. Through this analysis, we highlight key open research challenges in terms of scalability, secure orchestration, interpretable threat attribution, and dynamic trust calibration. This survey lays a foundational roadmap for secure, intelligent, and trustworthy IoT infrastructures powered by FMs.
Abstract:Machine learning models are increasingly shared and outsourced, raising requirements of verifying training effort (Proof-of-Learning, PoL) to ensure claimed performance and establishing ownership (Proof-of-Ownership, PoO) for transactions. When models are trained by untrusted parties, PoL and PoO must be enforced together to enable protection, attribution, and compensation. However, existing studies typically address them separately, which not only weakens protection against forgery and privacy breaches but also leads to high verification overhead. We propose PoLO, a unified framework that simultaneously achieves PoL and PoO using chained watermarks. PoLO splits the training process into fine-grained training shards and embeds a dedicated watermark in each shard. Each watermark is generated using the hash of the preceding shard, certifying the training process of the preceding shard. The chained structure makes it computationally difficult to forge any individual part of the whole training process. The complete set of watermarks serves as the PoL, while the final watermark provides the PoO. PoLO offers more efficient and privacy-preserving verification compared to the vanilla PoL solutions that rely on gradient-based trajectory tracing and inadvertently expose training data during verification, while maintaining the same level of ownership assurance of watermark-based PoO schemes. Our evaluation shows that PoLO achieves 99% watermark detection accuracy for ownership verification, while preserving data privacy and cutting verification costs to just 1.5-10% of traditional methods. Forging PoLO demands 1.1-4x more resources than honest proof generation, with the original proof retaining over 90% detection accuracy even after attacks.
Abstract:The aggregation efficiency and accuracy of wireless Federated Learning (FL) are significantly affected by resource constraints, especially in heterogeneous environments where devices exhibit distinct data distributions and communication capabilities. This paper proposes a clustering strategy that leverages prior knowledge similarity to group devices with similar data and communication characteristics, mitigating performance degradation from heterogeneity. On this basis, a novel Cluster- Aware Multi-round Update (CAMU) strategy is proposed, which treats clusters as the basic units and adjusts the local update frequency based on the clustered contribution threshold, effectively reducing update bias and enhancing aggregation accuracy. The theoretical convergence of the CAMU strategy is rigorously validated. Meanwhile, based on the convergence upper bound, the local update frequency and transmission power of each cluster are jointly optimized to achieve an optimal balance between computation and communication resources under constrained conditions, significantly improving the convergence efficiency of FL. Experimental results demonstrate that the proposed method effectively improves the model performance of FL in heterogeneous environments and achieves a better balance between communication cost and computational load under limited resources.
Abstract:Recently, large language models (LLMs) have achieved remarkable breakthroughs, revolutionizing the natural language processing domain and beyond. Due to immense parameter sizes, fine-tuning these models with private data for diverse downstream tasks has become mainstream. Though federated learning (FL) offers a promising solution for fine-tuning LLMs without sharing raw data, substantial computing costs hinder its democratization. Moreover, in real-world scenarios, private client devices often possess heterogeneous computing resources, further complicating LLM fine-tuning. To combat these challenges, we propose HSplitLoRA, a heterogeneous parameter-efficient fine-tuning (PEFT) framework built on split learning (SL) and low-rank adaptation (LoRA) fine-tuning, for efficiently fine-tuning LLMs on heterogeneous client devices. HSplitLoRA first identifies important weights based on their contributions to LLM training. It then dynamically configures the decomposition ranks of LoRA adapters for selected weights and determines the model split point according to varying computing budgets of client devices. Finally, a noise-free adapter aggregation mechanism is devised to support heterogeneous adapter aggregation without introducing noise. Extensive experiments demonstrate that HSplitLoRA outperforms state-of-the-art benchmarks in training accuracy and convergence speed.