Abstract:Physical-Layer Authentication (PLA) offers endogenous security, lightweight implementation, and high reliability, making it a promising complement to upper-layer security methods in Edge Intelligence (EI)-empowered Industrial Internet of Things (IIoT). However, state-of-the-art Channel State Information (CSI)-based PLA schemes face challenges in recognizing mobile multi-users due to the limited reliability of CSI fingerprints in low Signal-to-Noise Ratio (SNR) environments and the constantly shifting CSI distributions with user movements. To address these issues, we propose a Temporal Dynamic Graph Convolutional Network (TDGCN)-based PLA scheme. This scheme harnesses Intelligent Reflecting Surfaces (IRSs) to refine CSI fingerprint precision and employs Graph Neural Networks (GNNs) to capture the spatio-temporal dynamics induced by user movements and IRS deployments. Specifically, we partition hierarchical CSI fingerprints into multivariate time series and utilize dynamic GNNs to capture their associations. Additionally, Temporal Convolutional Networks (TCNs) handle temporal dependencies within each CSI fingerprint dimension. Dynamic Graph Isomorphism Networks (GINs) and cascade node clustering pooling further enable efficient information aggregation and reduced computational complexity. Simulations demonstrate the proposed scheme's superior authentication accuracy compared to seven baseline schemes.
Abstract:The OTFS (Orthogonal Time Frequency Space) is widely acknowledged for its ability to combat Doppler spread in time-varying channels. In this paper, another advantage of OTFS over OFDM (Orthogonal Frequency Division Multiplexing) will be demonstrated: much reduced channel training overhead. Specifically, the sparsity of the channel in delay-Doppler (D-D) domain implies strong correlation of channel gains in time-frequency (T-F) domain, which can be harnessed to reduce channel training overhead through interpolation. An immediate question is how much training overhead is needed in doubly-dispersive channels? A conventional belief is that the overhead is only dependent on the product of delay and Doppler spreads, but we will show that it's also dependent on the T-F window size. The finite T-F window leads to infinite spreading in D-D domain, and aliasing will be inevitable after sampling in T-F domain. Two direct consequences of the aliasing are increased channel training overhead and interference. Another factor contributing to channel estimation error is the inter-symbol-carrier-interference (ISCI), resulting from the uncertainty principle. Both aliasing and ISCI are considered in channel modelling, a low-complexity algorithm is proposed for channel estimation and interpolation through FFT. A large T-F window is necessary for reduced channel training overhead and aliasing, but increases processing delay. Fortunately, we show that the proposed algorithm can be implemented in a pipeline fashion. Further more, we showed that data-aided channel tracking is possible in D-D domain to further reduce the channel estimation frequency, i.e., channel extrapolation. The impacts of aliasing and ISCI on channel interpolation error are analyzed.
Abstract:Image retrieval from contextual descriptions (IRCD) aims to identify an image within a set of minimally contrastive candidates based on linguistically complex text. Despite the success of VLMs, they still significantly lag behind human performance in IRCD. The main challenges lie in aligning key contextual cues in two modalities, where these subtle cues are concealed in tiny areas of multiple contrastive images and within the complex linguistics of textual descriptions. This motivates us to propose ContextBLIP, a simple yet effective method that relies on a doubly contextual alignment scheme for challenging IRCD. Specifically, 1) our model comprises a multi-scale adapter, a matching loss, and a text-guided masking loss. The adapter learns to capture fine-grained visual cues. The two losses enable iterative supervision for the adapter, gradually highlighting the focal patches of a single image to the key textual cues. We term such a way as intra-contextual alignment. 2) Then, ContextBLIP further employs an inter-context encoder to learn dependencies among candidates, facilitating alignment between the text to multiple images. We term this step as inter-contextual alignment. Consequently, the nuanced cues concealed in each modality can be effectively aligned. Experiments on two benchmarks show the superiority of our method. We observe that ContextBLIP can yield comparable results with GPT-4V, despite involving about 7,500 times fewer parameters.
Abstract:Although reconfigurable intelligent surface (RIS) can improve the secrecy communication performance of wireless users, it still faces challenges such as limited coverage and double-fading effect. To address these issues, in this paper, we utilize a novel multi-functional RIS (MF-RIS) to enhance the secrecy performance of wireless users, and investigate the physical layer secrecy problem in non-orthogonal multiple access (NOMA) networks. Specifically, we derive closed-form expressions for the secrecy outage probability (SOP) and secrecy throughput of users in the MF-RIS-assisted NOMA networks with external and internal eavesdroppers. The asymptotic expressions for SOP and secrecy diversity order are also analyzed under high signal-to-noise ratio (SNR) conditions. Additionally, we examine the impact of receiver hardware limitations and error transmission-induced imperfect successive interference cancellation (SIC) on the secrecy performance. Numerical results indicate that: i) under the same power budget, the secrecy performance achieved by MF-RIS significantly outperforms active RIS and simultaneously transmitting and reflecting RIS; ii) with increasing power budget, residual interference caused by imperfect SIC surpasses thermal noise as the primary factor affecting secrecy capacity; and iii) deploying additional elements at the MF-RIS brings significant secrecy enhancements for the external eavesdropping scenario, in contrast to the internal eavesdropping case.
Abstract:Video anomaly understanding (VAU) aims to automatically comprehend unusual occurrences in videos, thereby enabling various applications such as traffic surveillance and industrial manufacturing. While existing VAU benchmarks primarily concentrate on anomaly detection and localization, our focus is on more practicality, prompting us to raise the following crucial questions: "what anomaly occurred?", "why did it happen?", and "how severe is this abnormal event?". In pursuit of these answers, we present a comprehensive benchmark for Causation Understanding of Video Anomaly (CUVA). Specifically, each instance of the proposed benchmark involves three sets of human annotations to indicate the "what", "why" and "how" of an anomaly, including 1) anomaly type, start and end times, and event descriptions, 2) natural language explanations for the cause of an anomaly, and 3) free text reflecting the effect of the abnormality. In addition, we also introduce MMEval, a novel evaluation metric designed to better align with human preferences for CUVA, facilitating the measurement of existing LLMs in comprehending the underlying cause and corresponding effect of video anomalies. Finally, we propose a novel prompt-based method that can serve as a baseline approach for the challenging CUVA. We conduct extensive experiments to show the superiority of our evaluation metric and the prompt-based approach. Our code and dataset are available at https://github.com/fesvhtr/CUVA.
Abstract:Federated Learning (FL) algorithms commonly sample a random subset of clients to address the straggler issue and improve communication efficiency. While recent works have proposed various client sampling methods, they have limitations in joint system and data heterogeneity design, which may not align with practical heterogeneous wireless networks. In this work, we advocate a new independent client sampling strategy to minimize the wall-clock training time of FL, while considering data heterogeneity and system heterogeneity in both communication and computation. We first derive a new convergence bound for non-convex loss functions with independent client sampling and then propose an adaptive bandwidth allocation scheme. Furthermore, we propose an efficient independent client sampling algorithm based on the upper bounds on the convergence rounds and the expected per-round training time, to minimize the wall-clock time of FL, while considering both the data and system heterogeneity. Experimental results under practical wireless network settings with real-world prototype demonstrate that the proposed independent sampling scheme substantially outperforms the current best sampling schemes under various training models and datasets.
Abstract:Recently proliferated deep learning-based semantic communications (DLSC) focus on how transmitted symbols efficiently convey a desired meaning to the destination. However, the sensitivity of neural models and the openness of wireless channels cause the DLSC system to be extremely fragile to various malicious attacks. This inspires us to ask a question: "Can we further exploit the advantages of transmission efficiency in wireless semantic communications while also alleviating its security disadvantages?". Keeping this in mind, we propose SemEntropy, a novel method that answers the above question by exploring the semantics of data for both adaptive transmission and physical layer encryption. Specifically, we first introduce semantic entropy, which indicates the expectation of various semantic scores regarding the transmission goal of the DLSC. Equipped with such semantic entropy, we can dynamically assign informative semantics to Orthogonal Frequency Division Multiplexing (OFDM) subcarriers with better channel conditions in a fine-grained manner. We also use the entropy to guide semantic key generation to safeguard communications over open wireless channels. By doing so, both transmission efficiency and channel security can be simultaneously improved. Extensive experiments over various benchmarks show the effectiveness of the proposed SemEntropy. We discuss the reason why our proposed method benefits secure transmission of DLSC, and also give some interesting findings, e.g., SemEntropy can keep the semantic accuracy remain 95% with 60% less transmission.
Abstract:Reconfigurable intelligent surface (RIS) facilitates the extraction of unpredictable channel features for physical layer key generation (PKG), securing communications among legitimate users with symmetric keys. Previous works have demonstrated that channel reciprocity plays a crucial role in generating symmetric keys in PKG systems, whereas, in reality, reciprocity is greatly affected by hardware interference and RIS-based jamming attacks. This motivates us to propose LoCKey, a novel approach that aims to improve channel reciprocity by mitigating interferences and attacks with a loop-back compensation scheme, thus maximizing the secrecy performance of the PKG system. Specifically, our proposed LoCKey is capable of effectively compensating for the CSI non-reciprocity by the combination of transmit-back signal value and error minimization module. Firstly, we introduce the entire flowchart of our method and provide an in-depth discussion of each step. Following that, we delve into a theoretical analysis of the performance optimizations when our LoCKey is applied for CSI reciprocity enhancement. Finally, we conduct experiments to verify the effectiveness of the proposed LoCKey in improving channel reciprocity under various interferences for RIS-assisted wireless communications. The results demonstrate a significant improvement in both the rate of key generation assisted by the RIS and the consistency of the generated keys, showing great potential for the practical deployment of our LoCKey in future wireless systems.
Abstract:Graph convolution networks (GCNs) are extensively utilized in various graph tasks to mine knowledge from spatial data. Our study marks the pioneering attempt to quantitatively investigate the GCN robustness over omnipresent heterophilic graphs for node classification. We uncover that the predominant vulnerability is caused by the structural out-of-distribution (OOD) issue. This finding motivates us to present a novel method that aims to harden GCNs by automatically learning Latent Homophilic Structures over heterophilic graphs. We term such a methodology as LHS. To elaborate, our initial step involves learning a latent structure by employing a novel self-expressive technique based on multi-node interactions. Subsequently, the structure is refined using a pairwisely constrained dual-view contrastive learning approach. We iteratively perform the above procedure, enabling a GCN model to aggregate information in a homophilic way on heterophilic graphs. Armed with such an adaptable structure, we can properly mitigate the structural OOD threats over heterophilic graphs. Experiments on various benchmarks show the effectiveness of the proposed LHS approach for robust GCNs.
Abstract:Multimodal Sarcasm Understanding (MSU) has a wide range of applications in the news field such as public opinion analysis and forgery detection. However, existing MSU benchmarks and approaches usually focus on sentence-level MSU. In document-level news, sarcasm clues are sparse or small and are often concealed in long text. Moreover, compared to sentence-level comments like tweets, which mainly focus on only a few trends or hot topics (e.g., sports events), content in the news is considerably diverse. Models created for sentence-level MSU may fail to capture sarcasm clues in document-level news. To fill this gap, we present a comprehensive benchmark for Document-level Multimodal Sarcasm Understanding (DocMSU). Our dataset contains 102,588 pieces of news with text-image pairs, covering 9 diverse topics such as health, business, etc. The proposed large-scale and diverse DocMSU significantly facilitates the research of document-level MSU in real-world scenarios. To take on the new challenges posed by DocMSU, we introduce a fine-grained sarcasm comprehension method to properly align the pixel-level image features with word-level textual features in documents. Experiments demonstrate the effectiveness of our method, showing that it can serve as a baseline approach to the challenging DocMSU. Our code and dataset are available at https://github.com/Dulpy/DocMSU.