Abstract:Physical-Layer Authentication (PLA) has been recently believed as an endogenous-secure and energy-efficient technique to recognize IoT terminals. However, the major challenge of applying the state-of-the-art PLA schemes directly to 6G-enabled IoT is the inaccurate channel fingerprint estimation in low Signal-Noise Ratio (SNR) environments, which will greatly influence the reliability and robustness of PLA. To tackle this issue, we propose a configurable-fingerprint-based PLA architecture through Intelligent Reflecting Surface (IRS) that helps create an alternative wireless transmission path to provide more accurate fingerprints. According to Baye's theorem, we propose a Gaussian Process Classification (GPC)-based PLA scheme, which utilizes the Expectation Propagation (EP) method to obtain the identities of unknown fingerprints. Considering that obtaining sufficient labeled fingerprint samples to train the GPC-based authentication model is challenging for future 6G systems, we further extend the GPC-based PLA to the Efficient-GPC (EGPC)-based PLA through active learning, which requires fewer labeled fingerprints and is more feasible. We also propose three fingerprint selecting algorithms to choose fingerprints, whose identities are queried to the upper-layers authentication mechanisms. For this reason, the proposed EGPC-based scheme is also a lightweight cross-layer authentication method to offer a superior security level. The simulations conducted on synthetic datasets demonstrate that the IRS-assisted scheme reduces the authentication error rate by 98.69% compared to the non-IRS-based scheme. Additionally, the proposed fingerprint selection algorithms reduce the authentication error rate by 65.96% to 86.93% and 45.45% to 70.00% under perfect and imperfect channel estimation conditions, respectively, when compared with baseline algorithms.
Abstract:Traditional communication systems focus on the transmission process, and the context-dependent meaning has been ignored. The fact that 5G system has approached Shannon limit and the increasing amount of data will cause communication bottleneck, such as the increased delay problems. Inspired by the ability of artificial intelligence to understand semantics, we propose a new communication paradigm, which integrates artificial intelligence and communication, the semantic communication system. Semantic communication is at the second level of communication based on Shannon and Weaver\cite{6197583}, which retains the semantic features of the transmitted information and recovers the signal at the receiver, thus compressing the communication traffic without losing important information. Different from other semantic communication systems, the proposed system not only transmits semantic information but also transmits semantic decoder. In addition, a general semantic metrics is proposed to measure the quality of semantic communication system. In particular, the semantic communication system for image, namely AESC-I, is designed to verify the feasibility of the new paradigm. Simulations are conducted on our system with the additive white Gaussian noise (AWGN) and the multipath fading channel using MNIST and Cifar10 datasets. The experimental results show that DeepSC-I can effectively extract semantic information and reconstruct images at a relatively low SNR.