Abstract:In this paper, we propose a cross-layer encrypted semantic communication (CLESC) framework for panoramic video transmission, incorporating feature extraction, encoding, encryption, cyclic redundancy check (CRC), and retransmission processes to achieve compatibility between semantic communication and traditional communication systems. Additionally, we propose an adaptive cross-layer transmission mechanism that dynamically adjusts CRC, channel coding, and retransmission schemes based on the importance of semantic information. This ensures that important information is prioritized under poor transmission conditions. To verify the aforementioned framework, we also design an end-to-end adaptive panoramic video semantic transmission (APVST) network that leverages a deep joint source-channel coding (Deep JSCC) structure and attention mechanism, integrated with a latitude adaptive module that facilitates adaptive semantic feature extraction and variable-length encoding of panoramic videos. The proposed CLESC is also applicable to the transmission of other modal data. Simulation results demonstrate that the proposed CLESC effectively achieves compatibility and adaptation between semantic communication and traditional communication systems, improving both transmission efficiency and channel adaptability. Compared to traditional cross-layer transmission schemes, the CLESC framework can reduce bandwidth consumption by 85% while showing significant advantages under low signal-to-noise ratio (SNR) conditions.
Abstract:The end-to-end image communication system has been widely studied in the academic community. The escalating demands on image communication systems in terms of data volume, environmental complexity, and task precision require enhanced communication efficiency, anti-noise ability and semantic fidelity. Therefore, we proposed a novel paradigm based on Semantic Feature Decomposition (SeFD) for the integration of semantic communication and large-scale visual generation models to achieve high-performance, highly interpretable and controllable image communication. According to this paradigm, a Texture-Color based Semantic Communication system of Images TCSCI is proposed. TCSCI decomposing the images into their natural language description (text), texture and color semantic features at the transmitter. During the transmission, features are transmitted over the wireless channel, and at the receiver, a large-scale visual generation model is utilized to restore the image through received features. TCSCI can achieve extremely compressed, highly noise-resistant, and visually similar image semantic communication, while ensuring the interpretability and editability of the transmission process. The experiments demonstrate that the TCSCI outperforms traditional image communication systems and existing semantic communication systems under extreme compression with good anti-noise performance and interpretability.
Abstract:The key feature of model-driven semantic communication is the propagation of the model. The semantic model component (SMC) is designed to drive the intelligent model to transmit in the physical channel, allowing the intelligence to flow through the networks. According to the characteristics of neural networks with common and individual model parameters, this paper designs the cross-source-domain and cross-task semantic component model. Considering that the basic model is deployed on the edge node, the large server node updates the edge node by transmitting only the semantic component model to the edge node so that the edge node can handle different sources and different tasks. In addition, this paper also discusses how channel noise affects the performance of the model and proposes methods of injection noise and regularization to improve the noise resistance of the model. Experiments show that SMCs use smaller model parameters to achieve cross-source, cross-task functionality while maintaining performance and improving the model's tolerance to noise. Finally, a component transfer-based unmanned vehicle tracking prototype was implemented to verify the feasibility of model components in practical applications.
Abstract:Semantic communication, as a revolutionary communication architecture, is considered a promising novel communication paradigm. Unlike traditional symbol-based error-free communication systems, semantic-based visual communication systems extract, compress, transmit, and reconstruct images at the semantic level. However, widely used image similarity evaluation metrics, whether pixel-based MSE or PSNR or structure-based MS-SSIM, struggle to accurately measure the loss of semantic-level information of the source during system transmission. This presents challenges in evaluating the performance of visual semantic communication systems, especially when comparing them with traditional communication systems. To address this, we propose a semantic evaluation metric -- SeSS (Semantic Similarity Score), based on Scene Graph Generation and graph matching, which shifts the similarity scores between images into semantic-level graph matching scores. Meanwhile, semantic similarity scores for tens of thousands of image pairs are manually annotated to fine-tune the hyperparameters in the graph matching algorithm, aligning the metric more closely with human semantic perception. The performance of the SeSS is tested on different datasets, including (1)images transmitted by traditional and semantic communication systems at different compression rates, (2)images transmitted by traditional and semantic communication systems at different signal-to-noise ratios, (3)images generated by large-scale model with different noise levels introduced, and (4)cases of images subjected to certain special transformations. The experiments demonstrate the effectiveness of SeSS, indicating that the metric can measure the semantic-level differences in semantic-level information of images and can be used for evaluation in visual semantic communication systems.
Abstract:In this paper, we propose a novel semantic digital analog converter (sDAC) for the compatibility of semantic communications and digital communications. Most of the current semantic communication systems are based on the analog modulations, ignoring their incorporation with digital communication systems, which are more common in practice. In fact, quantization methods in traditional communication systems are not appropriate for use in the era of semantic communication as these methods do not consider the semantic information inside symbols. In this case, any bit flip caused by channel noise can lead to a great performance drop. To address this challenge, sDAC is proposed. It is a simple yet efficient and generative module used to realize digital and analog bi-directional conversion. On the transmitter side, continuous values from the encoder are converted to binary bits and then can be modulated by any existing methods. After transmitting through the noisy channel, these bits get demodulated by paired methods and converted back to continuous values for further semantic decoding. The whole progress does not depend on any specific semantic model, modulation methods, or channel conditions. In the experiment section, the performance of sDAC is tested across different semantic models, semantic tasks, modulation methods, channel conditions and quantization orders. Test results show that the proposed sDAC has great generative properties and channel robustness.
Abstract:Semantic communication, as a novel communication paradigm, has attracted the interest of many scholars, with multi-user, multi-input multi-output (MIMO) scenarios being one of the critical contexts. This paper presents a semantic importance-aware based communication system (SIA-SC) over MIMO Rayleigh fading channels. Combining the semantic symbols' inequality and the equivalent subchannels of MIMO channels based on Singular Value Decomposition (SVD) maximizes the end-to-end semantic performance through the new layer mapping method. For multi-user scenarios, a method of semantic interference cancellation is proposed. Furthermore, a new metric, namely semantic information distortion (SID), is established to unify the expressions of semantic performance, which is affected by channel bandwidth ratio (CBR) and signal-to-noise ratio (SNR). With the help of the proposed metric, we derived performance expressions and Semantic Outage Probability (SOP) of SIA-SC for Single-User Single-Input Single-Output (SU-SISO), Single-User MIMO (SU-MIMO), Multi-Users SISO (MU-MIMO) and Multi-Users MIMO (MU-MIMO) scenarios. Numerical experiments show that SIA-SC can significantly improve semantic performance across various scenarios.
Abstract:Multiple access technology is a key technology in various generations of wireless communication systems. As a potential multiple access technology for the next generation wireless communication systems, model division multiple access (MDMA) technology improves spectrum efficiency and feasibility regions. This implies that the MDMA scheme can achieve greater performance gains compared to traditional schemes. Relayassisted cooperative networks, as a infrastructure of wireless communication, can effectively utilize resources and improve performance when MDMA is applied. In this paper, a communication relay cooperative network based on MDMA in dissimilar rayleigh fading channels is proposed, which consists of two source nodes, any number of decode-and-forward (DF) relay nodes, and one destination node, as well as using the maximal ratio combining (MRC) at the destination to combine the signals received from the source and relays. By applying the state transition matrix (STM) and moment generating function (MGF), closed-form analytical solutions for outage probability and resource utilization efficiency are derived. Theoretical and simulation results are conducted to verify the validity of the theoretical analysis.
Abstract:Nowadays, the need for high-quality image reconstruction and restoration is more and more urgent. However, most image transmission systems may suffer from image quality degradation or transmission interruption in the face of interference such as channel noise and link fading. To solve this problem, a relay communication network for semantic image transmission based on shared feature extraction and hyperprior entropy compression (HEC) is proposed, where the shared feature extraction technology based on Pearson correlation is proposed to eliminate partial shared feature of extracted semantic latent feature. In addition, the HEC technology is used to resist the effect of channel noise and link fading and carried out respectively at the source node and the relay node. Experimental results demonstrate that compared with other recent research methods, the proposed system has lower transmission overhead and higher semantic image transmission performance. Particularly, under the same conditions, the multi-scale structural similarity (MS-SSIM) of this system is superior to the comparison method by approximately 0.2.
Abstract:Compared with the current Shannon's Classical Information Theory (CIT) paradigm, semantic communication (SemCom) has recently attracted more attention, since it aims to transmit the meaning of information rather than bit-by-bit transmission, thus enhancing data transmission efficiency and supporting future human-centric, data-, and resource-intensive intelligent services in 6G systems. Nevertheless, channel noises are common and even serious in 6G-empowered scenarios, limiting the communication performance of SemCom, especially when Signal-to-Noise (SNR) levels during training and deployment stages are different, but training multi-networks to cover the scenario with a broad range of SNRs is computationally inefficient. Hence, we develop a novel De-Noising SemCom (DNSC) framework, where the designed de-noiser module can eliminate noise interference from semantic vectors. Upon the designed DNSC architecture, we further combine adversarial learning, variational autoencoder, and diffusion model to propose the Latent Diffusion DNSC (Latent-Diff DNSC) scheme to realize intelligent online de-noising. During the offline training phase, noises are added to latent semantic vectors in a forward Markov diffusion manner and then are eliminated in a reverse diffusion manner through the posterior distribution approximated by the U-shaped Network (U-Net), where the semantic de-noiser is optimized by maximizing evidence lower bound (ELBO). Such design can model real noisy channel environments with various SNRs and enable to adaptively remove noises from noisy semantic vectors during the online transmission phase. The simulations on open-source image datasets demonstrate the superiority of the proposed Latent-Diff DNSC scheme in PSNR and SSIM over different SNRs than the state-of-the-art schemes, including JPEG, Deep JSCC, and ADJSCC.
Abstract:Semantic communication serves as a novel paradigm and attracts the broad interest of researchers. One critical aspect of it is the multi-user semantic communication theory, which can further promote its application to the practical network environment. While most existing works focused on the design of end-to-end single-user semantic transmission, a novel non-orthogonal multiple access (NOMA)-based multi-user semantic communication system named NOMASC is proposed in this paper. The proposed system can support semantic tranmission of multiple users with diverse modalities of source information. To avoid high demand for hardware, an asymmetric quantizer is employed at the end of the semantic encoder for discretizing the continuous full-resolution semantic feature. In addition, a neural network model is proposed for mapping the discrete feature into self-learned symbols and accomplishing intelligent multi-user detection (MUD) at the receiver. Simulation results demonstrate that the proposed system holds good performance in non-orthogonal transmission of multiple user signals and outperforms the other methods, especially at low-to-medium SNRs. Moreover, it has high robustness under various simulation settings and mismatched test scenarios.