Abstract:The end-to-end image communication system has been widely studied in the academic community. The escalating demands on image communication systems in terms of data volume, environmental complexity, and task precision require enhanced communication efficiency, anti-noise ability and semantic fidelity. Therefore, we proposed a novel paradigm based on Semantic Feature Decomposition (SeFD) for the integration of semantic communication and large-scale visual generation models to achieve high-performance, highly interpretable and controllable image communication. According to this paradigm, a Texture-Color based Semantic Communication system of Images TCSCI is proposed. TCSCI decomposing the images into their natural language description (text), texture and color semantic features at the transmitter. During the transmission, features are transmitted over the wireless channel, and at the receiver, a large-scale visual generation model is utilized to restore the image through received features. TCSCI can achieve extremely compressed, highly noise-resistant, and visually similar image semantic communication, while ensuring the interpretability and editability of the transmission process. The experiments demonstrate that the TCSCI outperforms traditional image communication systems and existing semantic communication systems under extreme compression with good anti-noise performance and interpretability.
Abstract:Semantic communication, as a revolutionary communication architecture, is considered a promising novel communication paradigm. Unlike traditional symbol-based error-free communication systems, semantic-based visual communication systems extract, compress, transmit, and reconstruct images at the semantic level. However, widely used image similarity evaluation metrics, whether pixel-based MSE or PSNR or structure-based MS-SSIM, struggle to accurately measure the loss of semantic-level information of the source during system transmission. This presents challenges in evaluating the performance of visual semantic communication systems, especially when comparing them with traditional communication systems. To address this, we propose a semantic evaluation metric -- SeSS (Semantic Similarity Score), based on Scene Graph Generation and graph matching, which shifts the similarity scores between images into semantic-level graph matching scores. Meanwhile, semantic similarity scores for tens of thousands of image pairs are manually annotated to fine-tune the hyperparameters in the graph matching algorithm, aligning the metric more closely with human semantic perception. The performance of the SeSS is tested on different datasets, including (1)images transmitted by traditional and semantic communication systems at different compression rates, (2)images transmitted by traditional and semantic communication systems at different signal-to-noise ratios, (3)images generated by large-scale model with different noise levels introduced, and (4)cases of images subjected to certain special transformations. The experiments demonstrate the effectiveness of SeSS, indicating that the metric can measure the semantic-level differences in semantic-level information of images and can be used for evaluation in visual semantic communication systems.
Abstract:Intelligent inspection robots are widely used in substation patrol inspection, which can help check potential safety hazards by patrolling the substation and sending back scene images. However, when patrolling some marginal areas with weak signal, the scene images cannot be sucessfully transmissted to be used for hidden danger elimination, which greatly reduces the quality of robots'daily work. To solve such problem, a Specific Task-oriented Semantic Communication System for Imag-STSCI is designed, which involves the semantic features extraction, transmission, restoration and enhancement to get clearer images sent by intelligent robots under weak signals. Inspired by that only some specific details of the image are needed in such substation patrol inspection task, we proposed a new paradigm of semantic enhancement in such specific task to ensure the clarity of key semantic information when facing a lower bit rate or a low signal-to-noise ratio situation. Across the reality-based simulation, experiments show our STSCI can generally surpass traditional image-compression-based and channel-codingbased or other semantic communication system in the substation patrol inspection task with a lower bit rate even under a low signal-to-noise ratio situation.