Abstract:The key feature of model-driven semantic communication is the propagation of the model. The semantic model component (SMC) is designed to drive the intelligent model to transmit in the physical channel, allowing the intelligence to flow through the networks. According to the characteristics of neural networks with common and individual model parameters, this paper designs the cross-source-domain and cross-task semantic component model. Considering that the basic model is deployed on the edge node, the large server node updates the edge node by transmitting only the semantic component model to the edge node so that the edge node can handle different sources and different tasks. In addition, this paper also discusses how channel noise affects the performance of the model and proposes methods of injection noise and regularization to improve the noise resistance of the model. Experiments show that SMCs use smaller model parameters to achieve cross-source, cross-task functionality while maintaining performance and improving the model's tolerance to noise. Finally, a component transfer-based unmanned vehicle tracking prototype was implemented to verify the feasibility of model components in practical applications.