Abstract:Terahertz (THz) communication technology is regarded as a promising enabler for achieving ultra-high data rate transmission in next-generation communication systems. To mitigate the high path loss in THz systems, the transmitting beams are typically narrow and highly directional, which makes it difficult for a single beam to serve multiple users simultaneously. To address this challenge, reconfigurable intelligent surfaces (RIS), which can dynamically manipulate the wireless propagation environment, have been integrated into THz communication systems to extend coverage. Existing works mostly remain theoretical analysis and simulation, while prototype validation of RIS-assisted THz communication systems is scarce. In this paper, we designed a liquid crystal-based RIS operating at 220 GHz supporting both single-user and multi-user communication scenarios, followed by a RIS-aided THz communication system prototype. To enhance the system performance, we developed a beamforming method including a real-time power feedback control, which is compatible with both single-beam and multibeam modes. To support simultaneous multi-user transmission, we designed an OFDM-based resource allocation scheme. In our experiments, the received power gain with RIS is no less than 10 dB in the single-beam mode, and no less than 5 dB in the multi-beam mode. With the assistance of RIS, the achievable rate of the system could reach 2.341 Gbps with 3 users sharing 400 MHz bandwidth and the bit error rate (BER) of the system decreased sharply. Finally, an image transmission experiment was conducted to vividly show that the receiver could recover the transmitted information correctly with the help of RIS. The experimental results also demonstrated that the received signal quality was enhanced through power feedback adjustments.
Abstract:3D vision is of paramount importance for numerous applications ranging from machine intelligence to precision metrology. Despite much recent progress, the majority of 3D imaging hardware remains bulky and complicated and provides much lower image resolution compared to their 2D counterparts. Moreover, there are many well-known scenarios that existing 3D imaging solutions frequently fail. Here, we introduce an extended monocular 3D imaging (EM3D) framework that fully exploits the vectorial wave nature of light. Via the multi-stage fusion of diffraction- and polarization-based depth cues, using a compact monocular camera equipped with a diffractive-refractive hybrid lens, we experimentally demonstrate the snapshot acquisition of a million-pixel and accurate 3D point cloud for extended scenes that are traditionally challenging, including those with low texture, being highly reflective, or nearly transparent, without a data prior. Furthermore, we discover that the combination of depth and polarization information can unlock unique new opportunities in material identification, which may further expand machine intelligence for applications like target recognition and face anti-spoofing. The straightforward yet powerful architecture thus opens up a new path for a higher-dimensional machine vision in a minimal form factor, facilitating the deployment of monocular cameras for applications in much more diverse scenarios.
Abstract:Metasurfaces -- ultrathin structures composed of subwavelength optical elements -- have revolutionized light manipulation by enabling precise control over electromagnetic waves' amplitude, phase, polarization, and spectral properties. Concurrently, computational imaging leverages algorithms to reconstruct images from optically processed signals, overcoming limitations of traditional imaging systems. This review explores the synergistic integration of metaoptics and computational imaging, "computational metaoptics," which combines the physical wavefront shaping ability of metasurfaces with advanced computational algorithms to enhance imaging performance beyond conventional limits. We discuss how computational metaoptics addresses the inherent limitations of single-layer metasurfaces in achieving multifunctionality without compromising efficiency. By treating metasurfaces as physical preconditioners and co-designing them with reconstruction algorithms through end-to-end (inverse) design, it is possible to jointly optimize the optical hardware and computational software. This holistic approach allows for the automatic discovery of optimal metasurface designs and reconstruction methods that significantly improve imaging capabilities. Advanced applications enabled by computational metaoptics are highlighted, including phase imaging and quantum state measurement, which benefit from the metasurfaces' ability to manipulate complex light fields and the computational algorithms' capacity to reconstruct high-dimensional information. We also examine performance evaluation challenges, emphasizing the need for new metrics that account for the combined optical and computational nature of these systems. Finally, we identify new frontiers in computational metaoptics which point toward a future where computational metaoptics may play a central role in advancing imaging science and technology.
Abstract:In the rapidly evolving field of artificial intelligence, convolutional neural networks are essential for tackling complex challenges such as machine vision and medical diagnosis. Recently, to address the challenges in processing speed and power consumption of conventional digital convolution operations, many optical components have been suggested to replace the digital convolution layer in the neural network, accelerating various machine vision tasks. Nonetheless, the analog nature of the optical convolution kernel has not been fully explored. Here, we develop a spatial frequency domain training method to create arbitrarily shaped analog convolution kernels using an optical metasurface as the convolution layer, with its receptive field largely surpassing digital convolution kernels. By employing spatial multiplexing, the multiple parallel convolution kernels with both positive and negative weights are generated under the incoherent illumination condition. We experimentally demonstrate a 98.59% classification accuracy on the MNIST dataset, with simulations showing 92.63% and 68.67% accuracy on the Fashion-MNIST and CIFAR-10 datasets with additional digital layers. This work underscores the unique advantage of analog optical convolution, offering a promising avenue to accelerate machine vision tasks, especially in edge devices.